mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-26 07:29:08 +08:00
201 lines
9.1 KiB
Markdown
201 lines
9.1 KiB
Markdown
# Example (JKQTPlotter): Mandelbrot Set Explorer {#JKQTPlotterMandelbrot}
|
|
|
|
## Introduction and Usage
|
|
|
|
This project (see `./examples/mandelbrot/`) shows how to calculate and visualize the [Mandelbrot set](https://en.wikipedia.org/wiki/Mandelbrot_set) using `JKQTPlotter` and its `JKQTPMathImage`.
|
|
|
|
The source code of the main application is (see [`mandelbrot.cpp`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/mandelbrot/mandelbrotmainwindow.cpp):
|
|
|
|
![mandelbrot](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/mandelbrot.png)
|
|
|
|
You can use any of the several zooming methods (by mouse-wheel, panning, by drawing a rectangle ...) and the application will automaticaly calculate the zoomed area. Here is an example:
|
|
|
|
1. Select the Zoom by Mouse Rectangle tool: ![mandelbrot_zoom_pre](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/mandelbrot_zoom_pre.png)
|
|
2. Drag open a rectangle that you want to zoom into: ![mandelbrot_zoom](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/mandelbrot_zoom.png)
|
|
3. When you release the mouse, the new image will be calculated.
|
|
|
|
|
|
## How it works
|
|
|
|
In the constructor, the ui, containing a JKQTPlotter `ui->plot`, is initialized. Then the JKQTPlotter is set up:
|
|
|
|
```.cpp
|
|
// 1. set the graph scales manually
|
|
ui->plot->setXY(-2,1,-1,1);
|
|
ui->plot->setAbsoluteXY(-5,5,-5,5);
|
|
// 2. set the asxpect ratio to width/height
|
|
ui->plot->getPlotter()->setMaintainAspectRatio(true);
|
|
ui->plot->getPlotter()->setAspectRatio(static_cast<double>(ui->plot->width())/static_cast<double>(ui->plot->height()));
|
|
// 3. disable grids
|
|
ui->plot->getXAxis()->setDrawGrid(false);
|
|
ui->plot->getYAxis()->setDrawGrid(false);
|
|
```
|
|
|
|
Then a `JKQTPMathImage` is added which displays an image column `mandelbrot_col_display`:
|
|
|
|
```.cpp
|
|
graph=new JKQTPColumnMathImage(ui->plot);
|
|
graph->setTitle("");
|
|
// image column with the data
|
|
graph->setImageColumn(mandelbrot_col_display);
|
|
// image color range is calculated manually!
|
|
graph->setAutoImageRange(false);
|
|
graph->setImageMin(0);
|
|
graph->setImageMax(ui->spinMaxIterations->value());
|
|
// set image size
|
|
graph->setX(ui->plot->getXMin());
|
|
graph->setY(ui->plot->getYMin());
|
|
graph->setWidth(ui->plot->getXMax()-ui->plot->getXMin());
|
|
graph->setHeight(ui->plot->getYMax()-ui->plot->getYMin());
|
|
// add graph to plot
|
|
ui->plot->addGraph(graph);
|
|
```
|
|
|
|
In between thise two code blocks, two image columns are added to the internal `JKQTPDatastore`:
|
|
|
|
```.cpp
|
|
mandelbrot_col=ds->addImageColumn(300,200, "mandelbrot_image_calculate");
|
|
mandelbrot_col_display=ds->copyColumn(mandelbrot_col, "mandelbrot_image_display");
|
|
```
|
|
|
|
As mentioned before, `mandelbrot_col_display` is used for plotting and the baclground column (of the same size) `mandelbrot_col` is used to calculate a new image:
|
|
|
|
```.cpp
|
|
calculateMandelSet(ui->plot->getXMin(), ui->plot->getXMax(), ui->plot->getYMin(), ui->plot->getYMax(), 300, 200, ui->spinMaxIterations->value());
|
|
```
|
|
|
|
When calculation finished, the contents of `mandelbrot_col` is copied to `mandelbrot_col_display`:
|
|
|
|
```.cpp
|
|
ui->plot->getDatastore()->copyColumnData(mandelbrot_col_display, mandelbrot_col);
|
|
```
|
|
|
|
In order to implement the zoom functionality, the signal `JKQTPlotter::zoomChangedLocally` is connected to a function, which recalculates the new image for the new zoom-range:
|
|
|
|
|
|
```.cpp
|
|
void MandelbrotMainWindow::plotZoomChangedLocally(double newxmin, double newxmax, double newymin, double newymax, JKQTPlotter */*sender*/)
|
|
{
|
|
calculateMandelSet(newxmin, newxmax, newymin, newymax, ui->plot->getXAxis()->getParentPlotWidth(), ui->plot->getYAxis()->getParentPlotWidth(), ui->spinMaxIterations->value());
|
|
ui->plot->getDatastore()->copyColumnData(mandelbrot_col_display, mandelbrot_col);
|
|
if (ui->chkLogScaling->isChecked()) {
|
|
std::transform(ui->plot->getDatastore()->begin(mandelbrot_col), ui->plot->getDatastore()->end(mandelbrot_col), ui->plot->getDatastore()->begin(mandelbrot_col), &log10);
|
|
}
|
|
graph->setX(newxmin);
|
|
graph->setY(newymin);
|
|
graph->setWidth(newxmax-newxmin);
|
|
graph->setHeight(newymax-newymin);
|
|
// this call ensures correctly set NX and NY
|
|
graph->setImageColumn(mandelbrot_col_display);
|
|
ui->plot->redrawPlot();
|
|
}
|
|
```
|
|
|
|
The actual calculation is performed in `calculateMandelSet()`:
|
|
|
|
```.cpp
|
|
void MandelbrotMainWindow::calculateMandelSet(double rmin, double rmax, double imin, double imax, size_t width, size_t height, unsigned int max_iterations) {
|
|
QElapsedTimer timer;
|
|
timer.start();
|
|
|
|
auto ds=ui->plot->getDatastore();
|
|
|
|
// ensure the image column has the correct size
|
|
ds->resizeImageColumn(mandelbrot_col, width, height);
|
|
qDebug()<<"calculating for "<<width<<"x"<<height<<"pixels: real="<<rmin<<"..."<<rmax<<", imaginary="<<imin<<"..."<<imax;
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// iterate over all pixels, serial code
|
|
for (auto pix=ds->begin(mandelbrot_col); pix!= ds->end(mandelbrot_col); ++pix) {
|
|
// calculate the pixels coordinate in the imaginary plane
|
|
const double r0=static_cast<double>(pix.getImagePositionX())/static_cast<double>(width)*(rmax-rmin)+rmin;
|
|
const double i0=static_cast<double>(pix.getImagePositionY())/static_cast<double>(height)*(imax-imin)+imin;
|
|
//qDebug()<<pix.getImagePositionX()<<","<<pix.getImagePositionY()<<": "<<r0<<","<<i0;
|
|
|
|
unsigned int iteration=0;
|
|
double ri=0;
|
|
double ii=0;
|
|
// check for Mandelbrot series divergence at r0, i0, i.e. calculate
|
|
// the series [r(i),i(i)]=fmanelbrot(r(i-1),i(i-1) | r0,i0) for every point in the plane [r0,i0]
|
|
// starting from r(0)=i(0)=0. The number of iterations until |r(i),i(i)|>=2 gives the color of
|
|
// the point.
|
|
while(ri*ri+ii*ii<=2.0*2.0 && iteration<max_iterations) {
|
|
const double tmp=ri*ri-ii*ii+r0;
|
|
ii=2.0*ri*ii+i0;
|
|
ri=tmp;
|
|
iteration++;
|
|
}
|
|
*pix=iteration;
|
|
}
|
|
|
|
|
|
qDebug()<<"finished calculating after "<<static_cast<double>(timer.nsecsElapsed())/1000000.0<<"ms";
|
|
}
|
|
```
|
|
|
|
Here the actual algorithm to calculate the mandelbrot set is implemented. It iterates over all pixels `pix` in `mandelbrot_col` and updates their value according to the result of the calculation with `*pix=iteration;`.
|
|
|
|
In order to speed up the program, it actually uses a parallelized version of the algorithm:
|
|
|
|
```.cpp
|
|
void MandelbrotMainWindow::calculateMandelSet(double rmin, double rmax, double imin, double imax, size_t width, size_t height, unsigned int max_iterations) {
|
|
QElapsedTimer timer;
|
|
timer.start();
|
|
|
|
auto ds=ui->plot->getDatastore();
|
|
|
|
// ensure the image column has the correct size
|
|
ds->resizeImageColumn(mandelbrot_col, width, height);
|
|
qDebug()<<"calculating for "<<width<<"x"<<height<<"pixels: real="<<rmin<<"..."<<rmax<<", imaginary="<<imin<<"..."<<imax;
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// iterate over all pixels, parallelized version
|
|
|
|
// calculate the block size for parallel processing
|
|
const size_t blocksize=std::max<size_t>(100,width*height/std::max<size_t>(2, std::thread::hardware_concurrency()-1));
|
|
|
|
std::vector<std::thread> threads;
|
|
for (size_t offset=0; offset<width*height; offset+=blocksize) {
|
|
threads.push_back(std::thread([=](){
|
|
// start iterating at begin+offset
|
|
auto pix=ds->begin(mandelbrot_col)+static_cast<int>(offset);
|
|
// stop iterating at begin+offset+blocksize, or at the end
|
|
const auto pix_end=pix+static_cast<int>(blocksize);
|
|
for (; pix!=pix_end; ++pix) {
|
|
// calculate the pixels coordinate in the imaginary plane
|
|
const double r0=static_cast<double>(pix.getImagePositionX())/static_cast<double>(width)*(rmax-rmin)+rmin;
|
|
const double i0=static_cast<double>(pix.getImagePositionY())/static_cast<double>(height)*(imax-imin)+imin;
|
|
//qDebug()<<pix.getImagePositionX()<<","<<pix.getImagePositionY()<<": "<<r0<<","<<i0;
|
|
|
|
unsigned int iteration=0;
|
|
double ri=0;
|
|
double ii=0;
|
|
// check for Mandelbrot series divergence at r0, i0, i.e. calculate
|
|
// the series [r(i),i(i)]=fmanelbrot(r(i-1),i(i-1) | r0,i0) for every point in the plane [r0,i0]
|
|
// starting from r(0)=i(0)=0. The number of iterations until |r(i),i(i)|>=2 gives the color of
|
|
// the point.
|
|
while(ri*ri+ii*ii<=2.0*2.0 && iteration<max_iterations) {
|
|
const double tmp=ri*ri-ii*ii+r0;
|
|
ii=2.0*ri*ii+i0;
|
|
ri=tmp;
|
|
iteration++;
|
|
}
|
|
*pix=iteration;
|
|
}
|
|
}));
|
|
}
|
|
qDebug()<<" using "<<threads.size()<<" threads with blocksize="<<blocksize;
|
|
|
|
// wait for threads to finish
|
|
for (auto& thread:threads) thread.join();
|
|
threads.clear();
|
|
|
|
|
|
qDebug()<<"finished calculating after "<<static_cast<double>(timer.nsecsElapsed())/1000000.0<<"ms";
|
|
}
|
|
```
|
|
|
|
|