JKQtPlotter/lib/jkqtcommon/jkqtpmathtools.h

710 lines
22 KiB
C
Raw Normal View History

/*
2024-02-06 21:50:49 +08:00
Copyright (c) 2008-2024 Jan W. Krieger (<jan@jkrieger.de>)
This software is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef jkqtpmathtools_H_INCLUDED
#define jkqtpmathtools_H_INCLUDED
#include "jkqtcommon/jkqtcommon_imexport.h"
#include "jkqtcommon/jkqtpstringtools.h"
#include <cmath>
2019-05-30 04:47:26 +08:00
#include <limits>
#include <QPoint>
#include <QPointF>
#include <QLineF>
#include <QRectF>
#include <vector>
#include <QString>
#include <functional>
#include <type_traits>
#include <QHashFunctions>
2022-08-29 19:29:41 +08:00
#ifdef max
# undef max
#endif
#ifdef min
# undef min
#endif
/*! \brief \f$ \pi=3.14159... \f$
\ingroup jkqtptools_math_basic
*/
#ifdef M_PI
# define JKQTPSTATISTICS_PI M_PI
#else
# define JKQTPSTATISTICS_PI 3.14159265358979323846
#endif
/*! \brief \f$ \sqrt{2\pi}=2.50662827463 \f$
\ingroup jkqtptools_math_basic
*/
#define JKQTPSTATISTICS_SQRT_2PI 2.50662827463
2020-08-26 17:43:44 +08:00
/*! \brief \f$ \mbox{ln}(10)=2.30258509299404568402... \f$
\ingroup jkqtptools_math_basic
*/
#ifdef M_LN10
# define JKQTPSTATISTICS_LN10 M_LN10
#else
# define JKQTPSTATISTICS_LN10 2.30258509299404568402
#endif
/** \brief double-value NotANumber
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_DOUBLE_NAN (std::numeric_limits<double>::signaling_NaN())
/** \brief float-value NotANumber
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_FLOAT_NAN (std::numeric_limits<float>::signaling_NaN())
/** \brief double-value NotANumber
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_NAN JKQTP_DOUBLE_NAN
/** \brief double-value epsilon
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_DOUBLE_EPSILON (std::numeric_limits<double>::epsilon())
/** \brief float-value epsilon
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_FLOAT_EPSILON (std::numeric_limits<float>::epsilon())
/** \brief double-value NotANumber
* \ingroup jkqtptools_math_basic
*/
#define JKQTP_EPSILON JKQTP_DOUBLE_EPSILON
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
* \ingroup jkqtptools_math_basic
*
* This function uses static_cast<double>() by default, but certain specializations (e.g. for bool) are
* readily available.
*
* \callergraph
*/
template<typename T>
inline constexpr double jkqtp_todouble(const T& d) {
return static_cast<double>(d);
}
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
* \ingroup jkqtptools_math_basic
*
* Specialisation of the generic template jkqtp_todouble() with (true -> 1.0, false -> 0.0)
*
* \callergraph
*/
template<>
inline constexpr double jkqtp_todouble(const bool& d) {
return static_cast<double>((d)?1.0:0.0);
}
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!)
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param v the value to round and cast
*
* this is equivalent to
* \code
* static_cast<T>(round(v));
* \endcode
*
* \callergraph
*/
template<typename T>
inline T jkqtp_roundTo(const double& v) {
return static_cast<T>(round(v));
}
2024-01-22 05:08:14 +08:00
/** \brief round a double \a v using round() to a given number of decimal digits
* \ingroup jkqtptools_math_basic
*
* \param v the value to round and cast
* \param decDigits number of decimal digits, i.e. precision of the result
*
* this is equivalent to
* \code
* round(v * pow(10.0,(double)decDigits))/pow(10.0,(double)decDigits);
* \endcode
*
* \callergraph
*/
inline double jkqtp_roundToDigits(const double& v, const int decDigits) {
const double fac=pow(10.0,(double)decDigits);
return round(v * fac) / fac;
}
/** \brief round a double \a v using ceil() and convert it to a specified type T (static_cast!)
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param v the value to ceil and cast
*
* this is equivalent to
* \code
* static_cast<T>(ceil(v));
* \endcode
*
* \callergraph
*/
template<typename T>
inline T jkqtp_ceilTo(const double& v) {
return static_cast<T>(ceil(v));
}
/** \brief round a double \a v using trunc() and convert it to a specified type T (static_cast!)
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param v the value to trunc and cast
*
* this is equivalent to
* \code
* static_cast<T>(trunc(v));
* \endcode
*
* \callergraph
*/
template<typename T>
inline T jkqtp_truncTo(const double& v) {
return static_cast<T>(trunc(v));
}
/** \brief round a double \a v using floor() and convert it to a specified type T (static_cast!)
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param v the value to floor and cast
*
* this is equivalent to
* \code
* static_cast<T>(floor(v));
* \endcode
*
* \callergraph
*/
template<typename T>
inline T jkqtp_floorTo(const double& v) {
return static_cast<T>(floor(v));
}
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
* Finally the value is bounded to the range \a min ... \a max
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param min minimum output value
* \param v the value to round and cast
* \param max maximum output value
*
* this is equivalent to
* \code
* qBound(min, static_cast<T>(round(v)), max);
* \endcode
*/
template<typename T>
inline T jkqtp_boundedRoundTo(T min, const double& v, T max) {
return qBound(min, static_cast<T>(round(v)), max);
}
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
* Finally the value is bounded to the range \c std::numeric_limits<T>::min() ... \c std::numeric_limits<T>::max()
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param v the value to round and cast
*
* this is equivalent to
* \code
* jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max())
* \endcode
*/
template<typename T>
inline T jkqtp_boundedRoundTo(const double& v) {
return jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max());
}
/** \brief limits a value \a v to the given range \a min ... \a max
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...)
* \param min minimum output value
* \param v the value to round and cast
* \param max maximum output value
*/
template<typename T>
inline T jkqtp_bounded(T min, T v, T max) {
return (v<min) ? min : ((v>max)? max : v);
}
/** \brief limits a value \a v to the range of the given type \a T , i.e. \c std::numeric_limits<T>::min() ... \c std::numeric_limits<T>::max()
* \ingroup jkqtptools_math_basic
*
* \tparam T a numeric datatype (int, double, ...) for the output
* \tparam TIn a numeric datatype (int, double, ...) or the input \a v
* \param v the value to round and cast
*
* \note As a special feature, this function detectes whether one of T or TIn are unsigned and then cmpares against a limit of 0 instead of \c std::numeric_limits<T>::min() .
*/
template<typename T, typename TIn>
inline T jkqtp_bounded(TIn v) {
if (std::is_integral<T>::value && std::is_integral<TIn>::value && (std::is_signed<TIn>::value!=std::is_signed<T>::value)) {
return (v<TIn(0)) ? T(0) : ((v>std::numeric_limits<T>::max())? std::numeric_limits<T>::max() : static_cast<T>(v));
} else {
return (v<std::numeric_limits<T>::min()) ? std::numeric_limits<T>::min() : ((v>std::numeric_limits<T>::max())? std::numeric_limits<T>::max() : static_cast<T>(v));
}
}
/** \brief compare two floats \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
* \ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyEqual(float a, float b, float epsilon=2.0f*JKQTP_FLOAT_EPSILON)
{
return fabsf(a - b) <= epsilon;
}
/** \brief compare two doubles \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
* \ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyEqual(double a, double b, double epsilon=2.0*JKQTP_DOUBLE_EPSILON)
{
return fabs(a - b) <= epsilon;
}
/** \brief compare two floats \a a and \a b for uneuqality, where any difference smaller than \a epsilon is seen as equality
* \ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyUnequal(float a, float b, float epsilon=2.0f*JKQTP_FLOAT_EPSILON)
{
return fabsf(a - b) > epsilon;
}
/** \brief compare two doubles \a a and \a b for uneuqality, where any difference smaller than \a epsilon is seen as equality
* \ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyUnequal(double a, double b, double epsilon=2.0*JKQTP_DOUBLE_EPSILON)
{
return fabs(a - b) > epsilon;
}
/** \brief returns the given value \a v (i.e. identity function)
* \ingroup jkqtptools_math_basic */
template<typename T>
inline T jkqtp_identity(const T& v) {
return v;
}
/** \brief returns the quare of the value \a v, i.e. \c v*v
* \ingroup jkqtptools_math_basic */
template<typename T>
inline T jkqtp_sqr(const T& v) {
return v*v;
}
/*! \brief 4-th power of a number
\ingroup jkqtptools_math_basic
*/
template <class T>
inline T jkqtp_pow4(T x) {
const T xx=x*x;
return xx*xx;
}
/*! \brief 5-th power of a number
\ingroup jkqtptools_math_basic
*/
template <class T>
inline T jkqtp_pow5(T x) {
const T xx=x*x;
return xx*xx*x;
}
/*! \brief cube of a number
\ingroup jkqtptools_math_basic
*/
template <class T>
inline T jkqtp_cube(T x) {
return x*x*x;
}
/*! \brief calculates the sign of number \a x (-1 for x<0 and +1 for x>=0)
\ingroup jkqtptools_math_basic
*/
template <class T>
inline T jkqtp_sign(T x) {
if (x<0) return -1;
else return 1;
}
/** \brief returns the inversely proportional value 1/\a v of \a v
* \ingroup jkqtptools_math_basic */
template<typename T>
inline T jkqtp_inverseProp(const T& v) {
return T(1.0)/v;
}
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$
* \ingroup jkqtptools_math_basic */
template<typename T>
inline T jkqtp_inversePropSave(const T& v, const T& absMinV) {
T vv=v;
if (fabs(vv)<absMinV) vv=jkqtp_sign(v)*absMinV;
return T(1.0)/vv;
}
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$, uses \c absMinV=std::numeric_limits<T>::epsilon()*100.0
* \ingroup jkqtptools_math_basic */
template<typename T>
inline T jkqtp_inversePropSaveDefault(const T& v) {
return jkqtp_inversePropSave<T>(v, std::numeric_limits<T>::epsilon()*100.0);
}
#if defined(JKQtPlotter_HAS_j0) || defined(JKQtPlotter_HAS__j0) || defined(DOXYGEN)
/*! \brief j0() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_j0(double x) {
#ifdef JKQtPlotter_HAS__j0
return _j0(x);
#elif defined(JKQtPlotter_HAS_j0)
return j0(x);
#endif
}
/*! \brief j1() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_j1(double x) {
#ifdef JKQtPlotter_HAS__j0
return _j1(x);
#elif defined(JKQtPlotter_HAS_j0)
return j1(x);
#endif
}
#endif
#if defined(JKQtPlotter_HAS_jn) || defined(JKQtPlotter_HAS__jn) || defined(DOXYGEN)
/*! \brief jn() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_jn(int n, double x) {
#ifdef JKQtPlotter_HAS__jn
return _jn(n,x);
#elif defined(JKQtPlotter_HAS_jn)
return jn(n,x);
#endif
}
#endif
#if defined(JKQtPlotter_HAS_y0) || defined(JKQtPlotter_HAS__y0) || defined(DOXYGEN)
/*! \brief y0() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_y0(double x) {
#ifdef JKQtPlotter_HAS__y0
return _y0(x);
#elif defined(JKQtPlotter_HAS_y0)
return y0(x);
#endif
}
/*! \brief y1() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_y1(double x) {
#ifdef JKQtPlotter_HAS__y0
return _y1(x);
#elif defined(JKQtPlotter_HAS_y0)
return y1(x);
#endif
}
#endif
#if defined(JKQtPlotter_HAS_yn) || defined(JKQtPlotter_HAS__yn) || defined(DOXYGEN)
/*! \brief yn() function (without compiler issues)
\ingroup jkqtptools_math_basic
*/
inline double jkqtp_yn(int n, double x) {
#ifdef JKQtPlotter_HAS__yn
return _yn(n,x);
#elif defined(JKQtPlotter_HAS_yn)
return yn(n,x);
#endif
}
#endif
/** \brief calculate the distance between two QPointF points
* \ingroup jkqtptools_math_basic
*
*/
inline double jkqtp_distance(const QPointF& p1, const QPointF& p2){
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
}
/** \brief calculate the distance between two QPoint points
* \ingroup jkqtptools_math_basic
*
*/
inline double jkqtp_distance(const QPoint& p1, const QPoint& p2){
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
}
/** \brief check whether the dlotaing point number is OK (i.e. non-inf, non-NAN)
* \ingroup jkqtptools_math_basic
*/
template <typename T>
inline bool JKQTPIsOKFloat(T v) {
return std::isfinite(v)&&(!std::isinf(v))&&(!std::isnan(v));
}
inline bool JKQTPIsOKFloat(const QPointF& v) {
return JKQTPIsOKFloat<qreal>(v.x()) && JKQTPIsOKFloat<qreal>(v.y());
}
inline bool JKQTPIsOKFloat(const QLineF& v) {
return JKQTPIsOKFloat<qreal>(v.x1()) && JKQTPIsOKFloat<qreal>(v.x2()) && JKQTPIsOKFloat<qreal>(v.y1()) && JKQTPIsOKFloat<qreal>(v.y2());
}
inline bool JKQTPIsOKFloat(const QRectF& v) {
return JKQTPIsOKFloat<qreal>(v.x()) && JKQTPIsOKFloat<qreal>(v.x()) && JKQTPIsOKFloat<qreal>(v.width()) && JKQTPIsOKFloat<qreal>(v.height());
}
/** \brief evaluates a gaussian propability density function
* \ingroup jkqtptools_math_basic
*
* \f[ f(x,\mu, \sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}\cdot\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \f]
*/
inline double jkqtp_gaussdist(double x, double mu=0.0, double sigma=1.0) {
return exp(-0.5*jkqtp_sqr(x-mu)/jkqtp_sqr(sigma))/sqrt(2.0*JKQTPSTATISTICS_PI*sigma*sigma);
}
/*! \brief evaluate a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ with \f$ p_i \f$ taken from the range \a firstP ... \a lastP
\ingroup jkqtptools_math_basic
\tparam PolyItP iterator for the polynomial coefficients
\param x where to evaluate
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
\return value of polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ at location \a x
*/
template <class PolyItP>
inline double jkqtp_polyEval(double x, PolyItP firstP, PolyItP lastP) {
double v=0.0;
double xx=1.0;
for (auto itP=firstP; itP!=lastP; ++itP) {
v=v+(*itP)*xx;
xx=xx*x;
}
return v;
}
/*! \brief a C++-functor, which evaluates a polynomial
\ingroup jkqtptools_math_basic
*/
struct JKQTCOMMON_LIB_EXPORT JKQTPPolynomialFunctor {
std::vector<double> P;
template <class PolyItP>
inline JKQTPPolynomialFunctor(PolyItP firstP, PolyItP lastP) {
for (auto itP=firstP; itP!=lastP; ++itP) {
P.push_back(*itP);
}
}
inline double operator()(double x) const { return jkqtp_polyEval(x, P.begin(), P.end()); }
};
/*! \brief returns a C++-functor, which evaluates a polynomial
\ingroup jkqtptools_math_basic
\tparam PolyItP iterator for the polynomial coefficients
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
*/
template <class PolyItP>
inline std::function<double(double)> jkqtp_generatePolynomialModel(PolyItP firstP, PolyItP lastP) {
return JKQTPPolynomialFunctor(firstP, lastP);
}
/*! \brief Generates a LaTeX string for the polynomial model with the coefficients \a firstP ... \a lastP
\ingroup jkqtptools_math_basic
\tparam PolyItP iterator for the polynomial coefficients
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
*/
template <class PolyItP>
QString jkqtp_polynomialModel2Latex(PolyItP firstP, PolyItP lastP) {
QString str="f(x)=";
size_t p=0;
for (auto itP=firstP; itP!=lastP; ++itP) {
if (p==0) str+=jkqtp_floattolatexqstr(*itP, 3);
else {
if (*itP>=0) str+="+";
str+=QString("%2{\\cdot}x^{%1}").arg(p).arg(jkqtp_floattolatexqstr(*itP, 3));
}
p++;
}
return str;
}
/*! \brief Calculates a factorial \f$ n!=n\cdot(n-1)\cdot(n-2)\cdot...\cdot2\cdot1 \f$
\ingroup jkqtptools_math_basic
*/
template <class T=int>
2024-02-14 06:58:28 +08:00
inline T jkqtp_factorial(T n) {
T result = 1;
for (T i =1; i <= n; i++){
result = result*i;
}
return result;
}
/*! \brief Calculates a combination \f$ \left(\stackrel{n}{k}\right)=\frac{n!}{k!\cdot(n-k)!} \f$
\ingroup jkqtptools_math_basic
*/
template <class T=int>
2024-02-14 06:58:28 +08:00
inline T jkqtp_combination(T n, T k) {
if (n==k) return 1;
if (k==0) return 1;
if (k>n) return 0;
return jkqtp_factorial(n)/(jkqtp_factorial(k)*jkqtp_factorial(n-k));
}
/*! \brief creates a functor that evaluates the Bernstein polynomial \f$ B_i^n(t):=\left(\stackrel{n}{i}\right)\cdot t^i\cdot(1-t)^{n-1},\ \ \ \ 0\leq i\leq n \f$
\ingroup jkqtptools_math_basic
*/
template <class T>
std::function<T(T)> jkqtp_makeBernstein(int n, int i){
if (n==0 && i==0) return [=](T t) { return 1; };
if (n==1 && i==0) return [=](T t) { return (1.0-t); };
if (n==1 && i==1) return [=](T t) { return t; };
if (n==2 && i==0) return [=](T t) { return jkqtp_sqr(1.0-t); };
if (n==2 && i==1) return [=](T t) { return T(2.0)*t*(1.0-t); };
if (n==2 && i==2) return [=](T t) { return jkqtp_sqr(t); };
if (n==3 && i==0) return [=](T t) { return T(1)*jkqtp_cube(1.0-t); };
if (n==3 && i==1) return [=](T t) { return T(3)*t*jkqtp_sqr(1.0-t); };
if (n==3 && i==2) return [=](T t) { return T(3)*jkqtp_sqr(t)*(1.0-t); };
if (n==3 && i==3) return [=](T t) { return T(1)*jkqtp_cube(t); };
if (n==4 && i==0) return [=](T t) { return T(1)*jkqtp_pow4(1.0-t); };
if (n==4 && i==1) return [=](T t) { return T(4)*t*jkqtp_cube(1.0-t); };
if (n==4 && i==2) return [=](T t) { return T(6)*jkqtp_sqr(t)*jkqtp_sqr(1.0-t); };
if (n==4 && i==3) return [=](T t) { return T(4)*jkqtp_cube(t)*(1.0-t); };
if (n==4 && i==4) return [=](T t) { return T(1)*jkqtp_pow4(t); };
const T fac=jkqtp_combination<int64_t>(n,i);
return [=](T t) { return fac*pow(t,i)*pow(1.0-t,n-i); };
}
/*! \brief calculate the grwates common divisor (GCD) of \a a and \a b
\ingroup jkqtptools_math_basic
*/
JKQTCOMMON_LIB_EXPORT uint64_t jkqtp_gcd(uint64_t a, uint64_t b);
/*! \brief calculates numeratur integer part \a intpart , \a num and denominator \a denom of a fraction, representing a given floating-point number \a input
\ingroup jkqtptools_math_basic
*/
JKQTCOMMON_LIB_EXPORT void jkqtp_estimateFraction(double input, int &sign, uint64_t &intpart, uint64_t& num, uint64_t& denom, unsigned int precision=9);
/*! \brief returns the reversed containter \a l
\ingroup jkqtptools_math_basic
*/
template <class T>
inline T jkqtp_reversed(const T& l) {
T reversed_l;
reversed_l.reserve(l.size());
std::reverse_copy(l.begin(), l.end(), std::back_inserter(reversed_l));
return reversed_l;
}
/*! \brief can be used to build a hash-values from several hash-values
\ingroup jkqtptools_math_basic
\code
std::size_t seed=0;
jkqtp_hash_combine(seed, valA);
jkqtp_hash_combine(seed, valB);
//...
// finally seed contains the combined hash
\endcode
*/
template <class T>
inline void jkqtp_hash_combine(std::size_t& seed, const T& v)
{
const auto hsh=::qHash(v,0);
seed ^= hsh + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
/*! \brief can be used to build a hash-values from several hash-values
\ingroup jkqtptools_math_basic
\code
std::size_t seed=0;
jkqtp_combine_hash(seed, qHash(valA));
jkqtp_combine_hash(seed, qHash(valB));
//...
// finally seed contains the combined hash
\endcode
*/
inline void jkqtp_combine_hash(std::size_t& seed, std::size_t hsh)
{
seed ^= hsh + 0x9e3779b9 + (seed<<6) + (seed>>2);
}
#endif // jkqtpmathtools_H_INCLUDED