mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-24 06:32:12 +08:00
moved basic polynomial functions to jkqtpmathtools.h
renamed jkqtptoolsdebugging.h to jkqtpdebuggingtools.h added jkqtpstatWeightedCoefficientOfDetermination()
This commit is contained in:
parent
ad38ac47f2
commit
9ff9076e63
@ -17,6 +17,7 @@ functionaly groups.
|
||||
\defgroup jkqtptools_math_basic Mathematical Functions & Tools
|
||||
\ingroup jkqtptools_math
|
||||
|
||||
|
||||
This group assembles a variety of mathematical tool functions that are used in different places.
|
||||
|
||||
\defgroup jkqtptools_math_array Data Array Tools
|
||||
|
@ -314,10 +314,10 @@ To demonstrate this function we first generate data from a poylnomial model (wit
|
||||
size_t colPolyY=datastore1->addColumn("polynomial data, y");
|
||||
for (double x=-10; x<=10; x++) {
|
||||
datastore1->appendToColumn(colPolyX, x);
|
||||
datastore1->appendToColumn(colPolyY, jkqtpstatPolyEval(x, pPoly.begin(), pPoly.end())+d1(gen));
|
||||
datastore1->appendToColumn(colPolyY, jkqtp_polyEval(x, pPoly.begin(), pPoly.end())+d1(gen));
|
||||
}
|
||||
```
|
||||
The function `jkqtpstatPolyEval()` is used to evaluate a given polynomial (coefficients in `pPoly`) at a position `x`.
|
||||
The function `jkqtp_polyEval()` is used to evaluate a given polynomial (coefficients in `pPoly`) at a position `x`.
|
||||
|
||||
The generated data is visualized with scatter-plots:
|
||||
```.cpp
|
||||
@ -325,9 +325,9 @@ The generated data is visualized with scatter-plots:
|
||||
plot6->addGraph(graphP=new JKQTPXYLineGraph(plot6));
|
||||
graphP->setXYColumns(colPolyX, colPolyY);
|
||||
graphP->setDrawLine(false);
|
||||
graphP->setTitle(QString("data $%1+\\mathcal{N}(0,50)$").arg(jkqtpstatPolynomialModel2Latex(pPoly.begin(), pPoly.end())));
|
||||
graphP->setTitle(QString("data $%1+\\mathcal{N}(0,50)$").arg(jkqtp_polynomialModel2Latex(pPoly.begin(), pPoly.end())));
|
||||
```
|
||||
Here the function `jkqtpstatPolynomialModel2Latex()` generates a string from a polynomial model.
|
||||
Here the function `jkqtp_polynomialModel2Latex()` generates a string from a polynomial model.
|
||||
|
||||
Now we can call `jkqtpstatPolyFit()` to fit different polynomial regression models to the data:
|
||||
```.cpp
|
||||
@ -336,11 +336,11 @@ Now we can call `jkqtpstatPolyFit()` to fit different polynomial regression mode
|
||||
JKQTPXFunctionLineGraph* gPoly;
|
||||
jkqtpstatPolyFit(datastore1->begin(colPolyX), datastore1->end(colPolyX), datastore1->begin(colPolyY), datastore1->end(colPolyY), p, std::back_inserter(pFit));
|
||||
plot6->addGraph(gPoly=new JKQTPXFunctionLineGraph(plot6));
|
||||
gPoly->setPlotFunctionFunctor(jkqtpstatGeneratePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1$").arg(jkqtpstatPolynomialModel2Latex(pFit.begin(), pFit.end())));
|
||||
gPoly->setPlotFunctionFunctor(jkqtp_generatePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1$").arg(jkqtp_polynomialModel2Latex(pFit.begin(), pFit.end())));
|
||||
}
|
||||
```
|
||||
Each model is also ploted using a `JKQTPXFunctionLineGraph`. The plot function assigned to these `JKQTPXFunctionLineGraph` is generated by calling `jkqtpstatGeneratePolynomialModel()`, which returns a C++-functor for a polynomial.
|
||||
Each model is also ploted using a `JKQTPXFunctionLineGraph`. The plot function assigned to these `JKQTPXFunctionLineGraph` is generated by calling `jkqtp_generatePolynomialModel()`, which returns a C++-functor for a polynomial.
|
||||
|
||||
The resulting plots look like this (without added gaussian noise):
|
||||
|
||||
|
@ -274,22 +274,22 @@ int main(int argc, char* argv[])
|
||||
size_t colPolyY=datastore1->addColumn("polynomial data, y");
|
||||
for (double x=-10; x<=10; x++) {
|
||||
datastore1->appendToColumn(colPolyX, x);
|
||||
datastore1->appendToColumn(colPolyY, jkqtpstatPolyEval(x, pPoly.begin(), pPoly.end())+d1(gen)*50.0);
|
||||
datastore1->appendToColumn(colPolyY, jkqtp_polyEval(x, pPoly.begin(), pPoly.end())+d1(gen)*50.0);
|
||||
}
|
||||
// we visualize this data with a simple scatter graph:
|
||||
JKQTPXYLineGraph* graphP;
|
||||
plot6->addGraph(graphP=new JKQTPXYLineGraph(plot6));
|
||||
graphP->setXYColumns(colPolyX, colPolyY);
|
||||
graphP->setDrawLine(false);
|
||||
graphP->setTitle(QString("data $%1+\\mathcal{N}(0,50)$").arg(jkqtpstatPolynomialModel2Latex(pPoly.begin(), pPoly.end())));
|
||||
graphP->setTitle(QString("data $%1+\\mathcal{N}(0,50)$").arg(jkqtp_polynomialModel2Latex(pPoly.begin(), pPoly.end())));
|
||||
// 6.2. now we can fit polynomials with different number of coefficients:
|
||||
for (size_t p=0; p<=5; p++) {
|
||||
std::vector<double> pFit;
|
||||
JKQTPXFunctionLineGraph* gPoly;
|
||||
jkqtpstatPolyFit(datastore1->begin(colPolyX), datastore1->end(colPolyX), datastore1->begin(colPolyY), datastore1->end(colPolyY), p, std::back_inserter(pFit));
|
||||
plot6->addGraph(gPoly=new JKQTPXFunctionLineGraph(plot6));
|
||||
gPoly->setPlotFunctionFunctor(jkqtpstatGeneratePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1$").arg(jkqtpstatPolynomialModel2Latex(pFit.begin(), pFit.end())));
|
||||
gPoly->setPlotFunctionFunctor(jkqtp_generatePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1$").arg(jkqtp_polynomialModel2Latex(pFit.begin(), pFit.end())));
|
||||
}
|
||||
// 6.3. of course also the "adaptor" shortcuts are available:
|
||||
//for (size_t p=0; p<=5; p++) {
|
||||
|
@ -21,7 +21,7 @@ Copyright (c) 2008-2019 Jan W. Krieger (<jan@jkrieger.de>)
|
||||
|
||||
|
||||
|
||||
#include "jkqtcommon/jkqtptoolsdebugging.h"
|
||||
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
||||
#include <QDebug>
|
||||
#include <QApplication>
|
||||
|
@ -22,11 +22,14 @@
|
||||
#ifndef jkqtpmathtools_H_INCLUDED
|
||||
#define jkqtpmathtools_H_INCLUDED
|
||||
#include "jkqtcommon/jkqtp_imexport.h"
|
||||
#include "jkqtcommon/jkqtpstringtools.h"
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <QPoint>
|
||||
#include <QPointF>
|
||||
#include <vector>
|
||||
#include <QString>
|
||||
#include <functional>
|
||||
|
||||
|
||||
|
||||
@ -279,4 +282,74 @@ inline double jkqtp_gaussdist(double x, double mu=0.0, double sigma=1.0) {
|
||||
return exp(-0.5*jkqtp_sqr(x-mu)/jkqtp_sqr(sigma))/sqrt(2.0*M_PI*sigma*sigma);
|
||||
}
|
||||
|
||||
/*! \brief evaluate a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ with \f$ p_i \f$ taken from the range \a firstP ... \a lastP
|
||||
\ingroup jkqtptools_math_basic
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param x where to evaluate
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
\return value of polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ at location \a x
|
||||
|
||||
*/
|
||||
template <class PolyItP>
|
||||
inline double jkqtp_polyEval(double x, PolyItP firstP, PolyItP lastP) {
|
||||
double v=0.0;
|
||||
double xx=1.0;
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
v=v+(*itP)*xx;
|
||||
xx=xx*x;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
/*! \brief a C++-functor, which evaluates a polynomial
|
||||
\ingroup jkqtptools_math_basic
|
||||
*/
|
||||
struct JKQTPPolynomialFunctor {
|
||||
std::vector<double> P;
|
||||
template <class PolyItP>
|
||||
inline JKQTPPolynomialFunctor(PolyItP firstP, PolyItP lastP) {
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
P.push_back(*itP);
|
||||
}
|
||||
}
|
||||
inline double operator()(double x) const { return jkqtp_polyEval(x, P.begin(), P.end()); }
|
||||
|
||||
};
|
||||
|
||||
/*! \brief returns a C++-functor, which evaluates a polynomial
|
||||
\ingroup jkqtptools_math_basic
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
*/
|
||||
template <class PolyItP>
|
||||
inline std::function<double(double)> jkqtp_generatePolynomialModel(PolyItP firstP, PolyItP lastP) {
|
||||
return JKQTPPolynomialFunctor(firstP, lastP);
|
||||
}
|
||||
|
||||
/*! \brief Generates a LaTeX string for the polynomial model with the coefficients \a firstP ... \a lastP
|
||||
\ingroup jkqtptools_math_basic
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
*/
|
||||
template <class PolyItP>
|
||||
QString jkqtp_polynomialModel2Latex(PolyItP firstP, PolyItP lastP) {
|
||||
QString str="f(x)=";
|
||||
size_t p=0;
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
if (p==0) str+=jkqtp_floattolatexqstr(*itP, 3);
|
||||
else {
|
||||
if (*itP>=0) str+="+";
|
||||
str+=QString("%2{\\cdot}x^{%1}").arg(p).arg(jkqtp_floattolatexqstr(*itP, 3));
|
||||
}
|
||||
p++;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
#endif // jkqtpmathtools_H_INCLUDED
|
||||
|
@ -132,7 +132,7 @@ std::function<double (double)> jkqtpStatGenerateRegressionModel(JKQTPStatRegress
|
||||
|
||||
std::pair<std::function<double (double)>, std::function<double (double)> > jkqtpStatGenerateTransformation(JKQTPStatRegressionModelType type) {
|
||||
auto logF=[](double x)->double { return log(x); };
|
||||
auto expF=[](double x)->double { return exp(x); };
|
||||
//auto expF=[](double x)->double { return exp(x); };
|
||||
auto idF=&jkqtp_identity<double>;
|
||||
switch(type) {
|
||||
case JKQTPStatRegressionModelType::Linear: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
||||
|
@ -37,7 +37,7 @@
|
||||
#include "jkqtcommon/jkqtp_imexport.h"
|
||||
#include "jkqtcommon/jkqtplinalgtools.h"
|
||||
#include "jkqtcommon/jkqtparraytools.h"
|
||||
#include "jkqtcommon/jkqtptoolsdebugging.h"
|
||||
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
||||
|
||||
|
||||
|
||||
@ -2209,6 +2209,7 @@ inline void jkqtpstatWeightedRegression(JKQTPStatRegressionModelType type, Input
|
||||
|
||||
/*! \brief fits (in a least-squares sense) a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ of order P to a set of N data pairs \f$ (x_i,y_i) \f$
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
||||
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
||||
@ -2322,82 +2323,9 @@ inline void jkqtpstatPolyFit(InputItX firstX, InputItX lastX, InputItY firstY, I
|
||||
|
||||
}
|
||||
|
||||
/*! \brief evaluate a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ with \f$ p_i \f$ taken from the range \a firstP ... \a lastP
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param x where to evaluate
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
\return value of polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ at location \a x
|
||||
|
||||
*/
|
||||
template <class PolyItP>
|
||||
inline double jkqtpstatPolyEval(double x, PolyItP firstP, PolyItP lastP) {
|
||||
double v=0.0;
|
||||
double xx=1.0;
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
v=v+(*itP)*xx;
|
||||
xx=xx*x;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
/*! \brief a C++-functor, which evaluates a polynomial
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
*/
|
||||
struct JKQTPStatPolynomialFunctor {
|
||||
std::vector<double> P;
|
||||
template <class PolyItP>
|
||||
inline JKQTPStatPolynomialFunctor(PolyItP firstP, PolyItP lastP) {
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
P.push_back(*itP);
|
||||
}
|
||||
}
|
||||
inline double operator()(double x) const { return jkqtpstatPolyEval(x, P.begin(), P.end()); }
|
||||
|
||||
};
|
||||
|
||||
/*! \brief returns a C++-functor, which evaluates a polynomial
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
*/
|
||||
template <class PolyItP>
|
||||
inline std::function<double(double)> jkqtpstatGeneratePolynomialModel(PolyItP firstP, PolyItP lastP) {
|
||||
return JKQTPStatPolynomialFunctor(firstP, lastP);
|
||||
}
|
||||
|
||||
/*! \brief Generates a LaTeX string for the polynomial model with the coefficients \a firstP ... \a lastP
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam PolyItP iterator for the polynomial coefficients
|
||||
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
||||
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
||||
*/
|
||||
template <class PolyItP>
|
||||
QString jkqtpstatPolynomialModel2Latex(PolyItP firstP, PolyItP lastP) {
|
||||
QString str="f(x)=";
|
||||
size_t p=0;
|
||||
for (auto itP=firstP; itP!=lastP; ++itP) {
|
||||
if (p==0) str+=jkqtp_floattolatexqstr(*itP, 3);
|
||||
else {
|
||||
if (*itP>=0) str+="+";
|
||||
str+=QString("%2{\\cdot}x^{%1}").arg(p).arg(jkqtp_floattolatexqstr(*itP, 3));
|
||||
}
|
||||
p++;
|
||||
}
|
||||
return str;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*! \brief calculates the coefficient of determination \f$ R^2 \f$ for a set of measurements \f$ (x_i,y_i) \f$ with a fit function \f$ f(x) \f$
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
||||
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
||||
@ -2434,10 +2362,58 @@ inline double jkqtpstatCoefficientOfDetermination(InputItX firstX, InputItX last
|
||||
}
|
||||
|
||||
|
||||
/*! \brief calculates the weightedcoefficient of determination \f$ R^2 \f$ for a set of measurements \f$ (x_i,y_i,w_i) \f$ with a fit function \f$ f(x) \f$
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
||||
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
||||
\tparam InputItW standard iterator type of \a firstW and \a lastW.
|
||||
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
||||
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
||||
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
||||
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
||||
\param firstW iterator pointing to the first item in the weight-dataset to use \f$ w_1 \f$
|
||||
\param lastW iterator pointing behind the last item in the weight-dataset to use \f$ w_N \f$
|
||||
\param f function \f$ f(x) \f$, result of a fit to the data
|
||||
\param fWeightDataToWi an optional function, which is applied to the data from \a firstW ... \a lastW to convert them to weight, i.e. \c wi=fWeightDataToWi(*itW)
|
||||
e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values.
|
||||
In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight
|
||||
is directly proportional to the given value.
|
||||
\return weighted coeffcicient of determination \f[ R^2=1-\frac{\sum_iw_i^2\bigl[y_i-f(x_i)\bigr]^2}{\sum_iw_i^2\bigl[y_i-\overline{y}\bigr]^2} \f] where \f[ \overline{y}=\frac{1}{N}\cdot\sum_iw_iy_i \f]
|
||||
with \f[ \sum_iw_i=1 \f]
|
||||
|
||||
|
||||
|
||||
\see https://en.wikipedia.org/wiki/Coefficient_of_determination
|
||||
*/
|
||||
template <class InputItX, class InputItY, class InputItW>
|
||||
inline double jkqtpstatWeightedCoefficientOfDetermination(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, std::function<double(double)> f, std::function<double(double)> fWeightDataToWi=&jkqtp_identity<double>) {
|
||||
|
||||
auto itX=firstX;
|
||||
auto itY=firstY;
|
||||
auto itW=firstW;
|
||||
|
||||
const double yMean=jkqtpstatWeightedAverage(firstX,lastX,firstW);
|
||||
double SSres=0;
|
||||
double SStot=0;
|
||||
for (; itX!=lastX && itY!=lastY && itW!=lastW; ++itX, ++itY, ++itW) {
|
||||
const double fit_x=jkqtp_todouble(*itX);
|
||||
const double fit_y=jkqtp_todouble(*itY);
|
||||
const double fit_w2=jkqtp_sqr(fWeightDataToWi(jkqtp_todouble(*itW)));
|
||||
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y) && JKQTPIsOKFloat(fit_w2)) {
|
||||
SSres+=(fit_w2*jkqtp_sqr(fit_y-f(fit_x)));
|
||||
SStot+=(fit_w2*jkqtp_sqr(fit_y-yMean));
|
||||
}
|
||||
}
|
||||
|
||||
return 1.0-SSres/SStot;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*! \brief calculates the sum of deviations \f$ \chi^2 \f$ for a set of measurements \f$ (x_i,y_i) \f$ with a fit function \f$ f(x) \f$
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
||||
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
||||
@ -2474,7 +2450,7 @@ inline double jkqtpstatSumOfDeviations(InputItX firstX, InputItX lastX, InputItY
|
||||
|
||||
|
||||
/*! \brief calculates the weighted sum of deviations \f$ \chi^2 \f$ for a set of measurements \f$ (x_i,y_i,w_i) \f$ with a fit function \f$ f(x) \f$
|
||||
\ingroup jkqtptools_math_statistics_poly
|
||||
\ingroup jkqtptools_math_statistics_regression
|
||||
|
||||
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
||||
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
||||
|
@ -17,7 +17,7 @@ isEmpty(JKQTP_COMMON_PRI_INCLUDED) {
|
||||
}
|
||||
|
||||
HEADERS += $$PWD/jkqtcommon/jkqtp_imexport.h \
|
||||
$$PWD/jkqtcommon/jkqtptoolsdebugging.h \
|
||||
$$PWD/jkqtcommon/jkqtpdebuggingtools.h \
|
||||
$$PWD/jkqtcommon/jkqtpmathtools.h \
|
||||
$$PWD/jkqtcommon/jkqtpalgorithms.h \
|
||||
$$PWD/jkqtcommon/jkqtpstringtools.h \
|
||||
@ -33,7 +33,7 @@ isEmpty(JKQTP_COMMON_PRI_INCLUDED) {
|
||||
$$PWD/jkqtcommon/jkqtpstatisticstools.h
|
||||
|
||||
|
||||
SOURCES += $$PWD/jkqtcommon/jkqtptoolsdebugging.cpp \
|
||||
SOURCES += $$PWD/jkqtcommon/jkqtpdebuggingtools.cpp \
|
||||
$$PWD/jkqtcommon/jkqtpmathtools.cpp \
|
||||
$$PWD/jkqtcommon/jkqtpalgorithms.cpp \
|
||||
$$PWD/jkqtcommon/jkqtpstringtools.cpp \
|
||||
|
@ -21,7 +21,7 @@
|
||||
|
||||
#include "jkqtcommon/jkqtp_imexport.h"
|
||||
#include "jkqtplotter/jkqtptools.h"
|
||||
#include "jkqtcommon/jkqtptoolsdebugging.h"
|
||||
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
@ -20,7 +20,7 @@
|
||||
|
||||
#include "jkqtcommon/jkqtp_imexport.h"
|
||||
#include "jkqtcommon/jkqtpstatisticstools.h"
|
||||
#include "jkqtcommon/jkqtptoolsdebugging.h"
|
||||
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
||||
#include "jkqtplotter/jkqtpgraphsbase.h"
|
||||
#include "jkqtplotter/jkqtpgraphsbaseerrors.h"
|
||||
#include "jkqtplotter/jkqtpgraphsboxplot.h"
|
||||
@ -853,7 +853,7 @@ inline JKQTPXFunctionLineGraph* jkqtpstatAddLinearWeightedRegression(JKQTBasePlo
|
||||
JKQTPXFunctionLineGraph* g=new JKQTPXFunctionLineGraph(plotter);
|
||||
g->setSpecialFunction(JKQTPXFunctionLineGraph::SpecialFunction::Line);
|
||||
g->setParamsV(cA, cB);
|
||||
g->setTitle(QString("weighted regression: $f(x) = %1%2{\\cdot}x, \\chi^2=%4, R^2=%3$").arg(jkqtp_floattolatexqstr(cA, 2, true, 1e-16,1e-2, 1e4,false)).arg(jkqtp_floattolatexqstr(cB, 2, true, 1e-16,1e-2, 1e4,true)).arg(jkqtp_floattolatexqstr(jkqtpstatCoefficientOfDetermination(firstX,lastX,firstY,lastY,jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType::Linear, cA, cB)),3)).arg(jkqtp_floattolatexqstr(jkqtpstatWeightedSumOfDeviations(firstX,lastX,firstY,lastY,firstW,lastW,jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType::Linear, cA, cB),fWeightDataToWi),3)));
|
||||
g->setTitle(QString("weighted regression: $f(x) = %1%2{\\cdot}x, \\chi^2=%4, R^2=%3$").arg(jkqtp_floattolatexqstr(cA, 2, true, 1e-16,1e-2, 1e4,false)).arg(jkqtp_floattolatexqstr(cB, 2, true, 1e-16,1e-2, 1e4,true)).arg(jkqtp_floattolatexqstr(jkqtpstatWeightedCoefficientOfDetermination(firstX,lastX,firstY,lastY,firstW,lastW,jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType::Linear, cA, cB),fWeightDataToWi),3)).arg(jkqtp_floattolatexqstr(jkqtpstatWeightedSumOfDeviations(firstX,lastX,firstY,lastY,firstW,lastW,jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType::Linear, cA, cB),fWeightDataToWi),3)));
|
||||
plotter->addGraph(g);
|
||||
if (coeffA) *coeffA=cA;
|
||||
if (coeffB) *coeffB=cB;
|
||||
@ -1175,8 +1175,8 @@ inline JKQTPXFunctionLineGraph* jkqtpstatAddPolyFit(JKQTBasePlotter* plotter, In
|
||||
std::vector<double> pFit;
|
||||
JKQTPXFunctionLineGraph* gPoly=new JKQTPXFunctionLineGraph(plotter);
|
||||
jkqtpstatPolyFit(firstX,lastX,firstY,lastY,P,std::back_inserter(pFit));
|
||||
gPoly->setPlotFunctionFunctor(jkqtpstatGeneratePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1, \\chi^2=%3, R^2=%2$").arg(jkqtpstatPolynomialModel2Latex(pFit.begin(), pFit.end())).arg(jkqtp_floattolatexqstr(jkqtpstatCoefficientOfDetermination(firstX,lastX,firstY,lastY,jkqtpstatGeneratePolynomialModel(pFit.begin(), pFit.end())),3)).arg(jkqtp_floattolatexqstr(jkqtpstatSumOfDeviations(firstX,lastX,firstY,lastY,jkqtpstatGeneratePolynomialModel(pFit.begin(), pFit.end())),3)));
|
||||
gPoly->setPlotFunctionFunctor(jkqtp_generatePolynomialModel(pFit.begin(), pFit.end()));
|
||||
gPoly->setTitle(QString("regression: $%1, \\chi^2=%3, R^2=%2$").arg(jkqtp_polynomialModel2Latex(pFit.begin(), pFit.end())).arg(jkqtp_floattolatexqstr(jkqtpstatCoefficientOfDetermination(firstX,lastX,firstY,lastY,jkqtp_generatePolynomialModel(pFit.begin(), pFit.end())),3)).arg(jkqtp_floattolatexqstr(jkqtpstatSumOfDeviations(firstX,lastX,firstY,lastY,jkqtp_generatePolynomialModel(pFit.begin(), pFit.end())),3)));
|
||||
std::copy(pFit.begin(), pFit.end(), firstRes);
|
||||
plotter->addGraph(gPoly);
|
||||
return gPoly;
|
||||
|
@ -44,7 +44,7 @@
|
||||
#include <stdexcept>
|
||||
#include <cctype>
|
||||
#include "jkqtcommon/jkqtpstringtools.h"
|
||||
#include "jkqtcommon/jkqtptoolsdebugging.h"
|
||||
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
||||
#include "jkqtcommon/jkqtpmathtools.h"
|
||||
#include "jkqtcommon/jkqtpalgorithms.h"
|
||||
#include "jkqtcommon/jkqtpcodestructuring.h"
|
||||
|
Loading…
Reference in New Issue
Block a user