# Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore {#JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat}
[JKQTPlotterBasicJKQTPDatastore]: @ref JKQTPlotterBasicJKQTPDatastore "Basic Usage of JKQTPDatastore"
[JKQTPlotterBasicJKQTPDatastoreIterators]: @ref JKQTPlotterBasicJKQTPDatastoreIterators "Iterator-Based usage of JKQTPDatastore"
[JKQTPlotterBasicJKQTPDatastoreStatistics]: @ref JKQTPlotterBasicJKQTPDatastoreStatistics "Advanced 1-Dimensional Statistics with JKQTPDatastore"
[JKQTPlotterBasicJKQTPDatastoreRegression]: @ref JKQTPlotterBasicJKQTPDatastoreRegression "Regression Analysis (with the Statistics Library)"
[JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat]: @ref JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat "1-Dimensional Group Statistics with JKQTPDatastore"
[JKQTPlotterBasicJKQTPDatastoreStatistics2D]: @ref JKQTPlotterBasicJKQTPDatastoreStatistics2D "Advanced 2-Dimensional Statistics with JKQTPDatastore"
This tutorial project (see `./examples/simpletest_datastore_groupedstat/`) explains several advanced functions of JKQTPDatastore in combination with the [[statisticslibrary]] conatined in JKQTPlotter.
***Note*** that there are additional tutorial explaining other aspects of data mangement in JKQTPDatastore:
The source code of the main application can be found in [`jkqtplotter_simpletest_datastore_groupedstat.cpp`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/simpletest_datastore_groupedstat/jkqtplotter_simpletest_datastore_groupedstat.cpp).
This tutorial cites only parts of this code to demonstrate different ways of working with data for the graphs.
# Barcharts & Boxplots from categorized data
## Generating a Dataset for Grouped Barcharts
To demonstrate the grouped statistics, we first have to generate a dataset. The datapoints consist of pairs `<group,value>`, where the groups are encoded by the numbers 1,2,3 and in each group, several measurements are taken:
Now we can calculate the statistics for each group separately: Data is collected in new columns `colBarGroup`, `colBarAverage` and `colBarStdDev`. The statistics is then calculated by simply iterating over `groupeddataBar` and calling functions like `jkqtpstatAverage()` for each group:
# (Scatter-)Graphs with X/Y-errors from Categorized Data
## Dataset for XY Scatter Graphs
First we generate a second dataset, which is going to be used for a scaterplot. The datapoints consist of pairs `<x,y>`, that are based on a parabula with random deviations, both in x- and y-direction:
## Calculating x- and y-Errors from Categorized Data
Now we want to draw a scatterchart of the data, where data-points should be grouped together, in x-intervals of width 0.5. From all the points in each interval, we calculate the in both x- and y-direction the average and standard deviation. First we need to group the data using `jkqtpstatGroupData()`, which assembles the data points in each group groupeddataScatter. For the custom grouping of the datapoints we use the optional functor provided to `jkqtpstatGroupData()`: We use `jkqtpstatGroupingCustomRound1D()` with given parameters 0.25 for the (center) location of the first bin and bin width 0.5. The functor is not built by hand (which would be possible using std::bind), but with the generator function `jkqtpstatMakeGroupingCustomRound1D()`. In addition we use a variant of `jkqtpstatGroupData()`, which outputs a column with the category assigned to every data pair in the input data range:
The column colScatterRawGroup can now be used to color the scatter graph:
```.cpp
gScatterRaw->setColorColumn(colScatterRawGroup);
```
Now we can calculate the statistics for each group separately: Data is collected in two new columns. Then the statistics is calculated by simply iterating over `groupeddataScatter` and calling functions like `jkqtpstatAverage()` for each group:
Also other flavors exist that generate different graphs (see the JKQTPlotter documentation):
-`jkqtpstatAddXYErrorLineGraph()`
-`jkqtpstatAddXYErrorParametrizedScatterGraph()`
-`jkqtpstatAddXYErrorGraph()`
# Screenshot of the full Program
The output of the full test program [`jkqtplotter_simpletest_datastore_groupedstat.cpp`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/simpletest_datastore_groupedstat/jkqtplotter_simpletest_datastore_groupedstat.cpp) looks like this: