# Tutorial (JKQTPDatastore): 1-Dimensional Group Statistics with JKQTPDatastore {#JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat} [JKQTPlotterBasicJKQTPDatastore]: @ref JKQTPlotterBasicJKQTPDatastore "Basic Usage of JKQTPDatastore" [JKQTPlotterBasicJKQTPDatastoreIterators]: @ref JKQTPlotterBasicJKQTPDatastoreIterators "Iterator-Based usage of JKQTPDatastore" [JKQTPlotterBasicJKQTPDatastoreStatistics]: @ref JKQTPlotterBasicJKQTPDatastoreStatistics "Advanced 1-Dimensional Statistics with JKQTPDatastore" [JKQTPlotterBasicJKQTPDatastoreRegression]: @ref JKQTPlotterBasicJKQTPDatastoreRegression "Regression Analysis (with the Statistics Library)" [JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat]: @ref JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat "1-Dimensional Group Statistics with JKQTPDatastore" [JKQTPlotterBasicJKQTPDatastoreStatistics2D]: @ref JKQTPlotterBasicJKQTPDatastoreStatistics2D "Advanced 2-Dimensional Statistics with JKQTPDatastore" [statisticslibrary]: @ref jkqtptools_math_statistics "JKQTPlotter Statistics Library" This tutorial project (see `./examples/simpletest_datastore_groupedstat/`) explains several advanced functions of JKQTPDatastore in combination with the [[statisticslibrary]] conatined in JKQTPlotter. ***Note*** that there are additional tutorial explaining other aspects of data mangement in JKQTPDatastore: - [JKQTPlotterBasicJKQTPDatastore] - [JKQTPlotterBasicJKQTPDatastoreIterators] - [JKQTPlotterBasicJKQTPDatastoreStatistics] - [JKQTPlotterBasicJKQTPDatastoreRegression] - [JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat] - [JKQTPlotterBasicJKQTPDatastoreStatistics2D] [TOC] The source code of the main application can be found in [`jkqtplotter_simpletest_datastore_groupedstat.cpp`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/simpletest_datastore_groupedstat/jkqtplotter_simpletest_datastore_groupedstat.cpp). This tutorial cites only parts of this code to demonstrate different ways of working with data for the graphs. # Barcharts & Boxplots from categorized data ## Generating a Dataset for Grouped Barcharts To demonstrate the grouped statistics, we first have to generate a dataset. The datapoints consist of pairs ``, where the groups are encoded by the numbers 1,2,3 and in each group, several measurements are taken: ```.cpp size_t colBarRawGroup=datastore1->addColumn("barchart, rawdata, group"); size_t colBarRawValue=datastore1->addColumn("barchart, rawdata, value"); // data for group 1 datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.1); datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.5); datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 0.8); // ... // data for group 2 datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.2); // ... // data for group 3 datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.1); // ... ``` Note that the data does not have to be sorted. You can add the dataset in any order! This dataset can be visualized with a simple scatter plot: ```.cpp JKQTPXYLineGraph* gScatterForBar; plotbarchart->addGraph(gScatterForBar=new JKQTPXYLineGraph(plotbarchart)); gScatterForBar->setXYColumns(colBarRawGroup, colBarRawValue); gScatterForBar->setDrawLine(false); gScatterForBar->setSymbolType(JKQTPCross); gScatterForBar->setSymbolSize(5); gScatterForBar->setSymbolColor(QColorWithAlphaF(QColor("red"), 0.5)); ``` The resulting plot looks like this: ![jkqtplotter_simpletest_datastore_groupedstat_barchartrawdata](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat_barchartrawdata.png) ## Calculating Grouped Statistics for a Barchart Now we want to draw a barchart for every group, which indicates the average in each group. This is done using methods from the statistics library. First we need to group the data using `jkqtpstatGroupData()`, which assembles the data points in each group groupeddataBar ```.cpp std::map > groupeddataBar; jkqtpstatGroupData(datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup), datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue), groupeddataBar); ``` Now we can calculate the statistics for each group separately: Data is collected in new columns `colBarGroup`, `colBarAverage` and `colBarStdDev`. The statistics is then calculated by simply iterating over `groupeddataBar` and calling functions like `jkqtpstatAverage()` for each group: ```.cpp size_t colBarGroup=datastore1->addColumn("barchart, group"); size_t colBarAverage=datastore1->addColumn("barchart, group-average"); size_t colBarStdDev=datastore1->addColumn("barchart, group-stddev"); for (auto it=groupeddataBar.begin(); it!=groupeddataBar.end(); ++it) { datastore1->appendToColumn(colBarGroup, it->first); datastore1->appendToColumn(colBarAverage, jkqtpstatAverage(it->second.begin(), it->second.end())); datastore1->appendToColumn(colBarStdDev, jkqtpstatStdDev(it->second.begin(), it->second.end())); } ``` Finally the calculated groups are drawn: ```.cpp JKQTPBarVerticalErrorGraph* gBar; plotbarchart->addGraph(gBar=new JKQTPBarVerticalErrorGraph(plotbarchart)); gBar->setXYColumns(colBarGroup, colBarAverage); gBar->setYErrorColumn(static_cast(colBarStdDev)); ``` The resulting plot looks like this: ![jkqtplotter_simpletest_datastore_groupedstat_barchart](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat_barchart.png) In order to safe yo the typing of the code above, shortcuts in the form of adaptors exist: ```.cpp jkqtpstatAddYErrorBarGraph(plotbarchart->getPlotter(), datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup), datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue)); ``` Also other flavors exist that generate different graphs (see the JKQTPlotter documentation): - `jkqtpstatAddYErrorLineGraph()` / `jkqtpstatAddXErrorLineGraph()` - `jkqtpstatAddYErrorBarGraph()` / `jkqtpstatAddXErrorBarGraph()` - `jkqtpstatAddYErrorImpulsesGraph()` / `jkqtpstatAddXErrorImpulsesGraph()` - `jkqtpstatAddYErrorParametrizedScatterGraph()` / `jkqtpstatAddXErrorParametrizedScatterGraph()` - `jkqtpstatAddYErrorFilledCurveGraph()` / `jkqtpstatAddXErrorFilledCurveGraph()` - `jkqtpstatAddYErrorGraph()` / `jkqtpstatAddXErrorGraph()` ## Calculating Grouped Statistics for a Boxplot With the methods above we can also calculate more advanced statistics, like e.g. boxplots: ```.cpp size_t colBarMedian=datastore1->addColumn("barchart, group-median"); size_t colBarMin=datastore1->addColumn("barchart, group-min"); size_t colBarMax=datastore1->addColumn("barchart, group-max"); size_t colBarQ25=datastore1->addColumn("barchart, group-Q25"); size_t colBarQ75=datastore1->addColumn("barchart, group-Q75"); for (auto it=groupeddataBar.begin(); it!=groupeddataBar.end(); ++it) { datastore1->appendToColumn(colBarMedian, jkqtpstatMedian(it->second.begin(), it->second.end())); datastore1->appendToColumn(colBarMin, jkqtpstatMinimum(it->second.begin(), it->second.end())); datastore1->appendToColumn(colBarMax, jkqtpstatMaximum(it->second.begin(), it->second.end())); datastore1->appendToColumn(colBarQ25, jkqtpstatQuantile(it->second.begin(), it->second.end(), 0.25)); datastore1->appendToColumn(colBarQ75, jkqtpstatQuantile(it->second.begin(), it->second.end(), 0.75)); } ``` The result can be plotted using JKQTPBoxplotVerticalGraph, which receives a column for each value class of the final plot: ```.cpp JKQTPBoxplotVerticalGraph* gBoxplot; plotboxplot->addGraph(gBoxplot=new JKQTPBoxplotVerticalGraph(plotboxplot)); gBoxplot->setPositionColumn(colBarGroup); gBoxplot->setMinColumn(colBarMin); gBoxplot->setMaxColumn(colBarMax); gBoxplot->setMedianColumn(colBarMedian); gBoxplot->setPercentile25Column(colBarQ25); gBoxplot->setPercentile75Column(colBarQ75); ``` The resulting plot looks like this: ![jkqtplotter_simpletest_datastore_groupedstat_boxplot](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat_boxplot.png) In order to safe yo the typing of the code above, shortcuts in the form of adaptors exist: ```.cpp jkqtpstatAddHBoxplotsAndOutliers(plotboxplot->getPlotter(), datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup), datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue)); ``` Also other flavors exist that generate different graphs (see the JKQTPlotter documentation): - `jkqtpstatAddVBoxplotsAndOutliers()` / `jkqtpstatAddHBoxplotsAndOutliers()` - `jkqtpstatVAddBoxplots()` / `jkqtpstatHAddBoxplots()` - `jkqtpstatAddBoxplots()` # (Scatter-)Graphs with X/Y-errors from Categorized Data ## Dataset for XY Scatter Graphs First we generate a second dataset, which is going to be used for a scaterplot. The datapoints consist of pairs ``, that are based on a parabula with random deviations, both in x- and y-direction: ```.cpp size_t colScatterRawX=datastore1->addColumn("scatterplot, rawdata, x"); size_t colScatterRawY=datastore1->addColumn("scatterplot, rawdata, y"); std::random_device rd; // random number generators: std::mt19937 gen{rd()}; std::normal_distribution<> d1{0,0.5}; const size_t N=100; const double xmax=3.5; for (size_t i=0; i(i)-static_cast(N)/2.0)*xmax/(static_cast(N)/2.0); const double y=jkqtp_sqr(x)+2.0; datastore1->appendToColumns(colScatterRawX, colScatterRawY, x+d1(gen), y+d1(gen)); } ``` This dataset can be visualized: ```.cpp JKQTPXYParametrizedScatterGraph* gScatterRaw; plotscattererrors->addGraph(gScatterRaw=new JKQTPXYParametrizedScatterGraph(plotscattererrors)); gScatterRaw->setXYColumns(colScatterRawX, colScatterRawY); gScatterRaw->setDrawLine(false); gScatterRaw->setSymbolType(JKQTPCross); gScatterRaw->setSymbolSize(5); ``` The resulting plot looks like this: ![jkqtplotter_simpletest_datastore_groupedstat_scatterrawdata](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat_scatterrawdata.png) ## Calculating x- and y-Errors from Categorized Data Now we want to draw a scatterchart of the data, where data-points should be grouped together, in x-intervals of width 0.5. From all the points in each interval, we calculate the in both x- and y-direction the average and standard deviation. First we need to group the data using `jkqtpstatGroupData()`, which assembles the data points in each group groupeddataScatter. For the custom grouping of the datapoints we use the optional functor provided to `jkqtpstatGroupData()`: We use `jkqtpstatGroupingCustomRound1D()` with given parameters 0.25 for the (center) location of the first bin and bin width 0.5. The functor is not built by hand (which would be possible using std::bind), but with the generator function `jkqtpstatMakeGroupingCustomRound1D()`. In addition we use a variant of `jkqtpstatGroupData()`, which outputs a column with the category assigned to every data pair in the input data range: ```.cpp std::map,std::vector > > groupeddataScatter; size_t colScatterRawGroup=datastore1->addColumn("scatterplot, rawdata, assigned-group"); jkqtpstatGroupData(datastore1->begin(colScatterRawX), datastore1->end(colScatterRawX), datastore1->begin(colScatterRawY), datastore1->end(colScatterRawY), datastore1->backInserter(colScatterRawGroup), groupeddataScatter, jkqtpstatMakeGroupingCustomRound1D(0.25, 0.5)); ``` The column colScatterRawGroup can now be used to color the scatter graph: ```.cpp gScatterRaw->setColorColumn(colScatterRawGroup); ``` Now we can calculate the statistics for each group separately: Data is collected in two new columns. Then the statistics is calculated by simply iterating over `groupeddataScatter` and calling functions like `jkqtpstatAverage()` for each group: ```.cpp size_t colScatterXAvg=datastore1->addColumn("scatter, x, average"); size_t colScatterXStd=datastore1->addColumn("scatter, x, stddev"); size_t colScatterYAvg=datastore1->addColumn("scatter, y, average"); size_t colScatterYStd=datastore1->addColumn("scatter, y, stddev"); for (auto it=groupeddataScatter.begin(); it!=groupeddataScatter.end(); ++it) { datastore1->appendToColumn(colScatterXAvg, jkqtpstatAverage(it->second.first.begin(), it->second.first.end())); datastore1->appendToColumn(colScatterXStd, jkqtpstatStdDev(it->second.first.begin(), it->second.first.end())); datastore1->appendToColumn(colScatterYAvg, jkqtpstatAverage(it->second.second.begin(), it->second.second.end())); datastore1->appendToColumn(colScatterYStd, jkqtpstatStdDev(it->second.second.begin(), it->second.second.end())); } ``` Finally the calculated groups are drawn ```.cpp JKQTPXYLineErrorGraph* gScatterErr; plotscattererrors->addGraph(gScatterErr=new JKQTPXYLineErrorGraph(plotscattererrors)); gScatterErr->setXYColumns(colScatterXAvg, colScatterYAvg); gScatterErr->setXErrorColumn(static_cast(colScatterXStd)); gScatterErr->setYErrorColumn(static_cast(colScatterYStd)); gScatterErr->setSymbolType(JKQTPFilledTriangle); gScatterErr->setDrawLine(false); ``` The resulting plot looks like this: ![jkqtplotter_simpletest_datastore_groupedstat_scatter](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat_scatter.png) In order to safe yo the typing of the code above, shortcuts in the form of adaptors exist: ```.cpp jkqtpstatAddXYErrorLineGraph(plotscattererrors->getPlotter(), datastore1->begin(colScatterRawX), datastore1->end(colScatterRawX), datastore1->begin(colScatterRawY), datastore1->end(colScatterRawY), jkqtpstatMakeGroupingCustomRound1D(0.25, 0.5)); ``` Also other flavors exist that generate different graphs (see the JKQTPlotter documentation): - `jkqtpstatAddXYErrorLineGraph()` - `jkqtpstatAddXYErrorParametrizedScatterGraph()` - `jkqtpstatAddXYErrorGraph()` # Screenshot of the full Program The output of the full test program [`jkqtplotter_simpletest_datastore_groupedstat.cpp`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/simpletest_datastore_groupedstat/jkqtplotter_simpletest_datastore_groupedstat.cpp) looks like this: ![jkqtplotter_simpletest_datastore_groupedstat](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_datastore_groupedstat.png)