2019-05-30 04:40:02 +08:00
/*
Copyright ( c ) 2008 - 2019 Jan W . Krieger ( < jan @ jkrieger . de > , < j . krieger @ dkfz . de > )
This software is free software : you can redistribute it and / or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU Lesser General Public License for more details .
You should have received a copy of the GNU Lesser General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef jkqtpmathtools_H_INCLUDED
# define jkqtpmathtools_H_INCLUDED
# include "jkqtcommon/jkqtp_imexport.h"
2019-06-02 21:38:09 +08:00
# include "jkqtcommon/jkqtpstringtools.h"
2019-05-30 04:40:02 +08:00
# include <cmath>
2019-05-30 04:47:26 +08:00
# include <limits>
2019-05-30 04:40:02 +08:00
# include <QPoint>
# include <QPointF>
# include <vector>
2019-06-02 21:38:09 +08:00
# include <QString>
# include <functional>
2019-05-30 04:40:02 +08:00
/*! \brief \f$ \sqrt{2\pi}=2.50662827463 \f$
\ ingroup jkqtptools_math_basic
*/
# define JKQTPSTATISTICS_SQRT_2PI 2.50662827463
/** \brief double-value NotANumber
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_DOUBLE_NAN (std::numeric_limits<double>::signaling_NaN())
/** \brief float-value NotANumber
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_FLOAT_NAN (std::numeric_limits<float>::signaling_NaN())
/** \brief double-value NotANumber
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_NAN JKQTP_DOUBLE_NAN
/** \brief double-value epsilon
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_DOUBLE_EPSILON (std::numeric_limits<double>::epsilon())
/** \brief float-value epsilon
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_FLOAT_EPSILON (std::numeric_limits<float>::epsilon())
/** \brief double-value NotANumber
* \ ingroup jkqtptools_math_basic
*/
# define JKQTP_EPSILON JKQTP_DOUBLE_EPSILON
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
* \ ingroup jkqtptools_math_basic
*
* This function uses static_cast < double > ( ) by default , but certain specializations ( e . g . for bool ) are
* readily available .
*
* \ callergraph
*/
template < typename T >
inline constexpr double jkqtp_todouble ( const T & d ) {
return static_cast < double > ( d ) ;
}
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
* \ ingroup jkqtptools_math_basic
*
* Specialisation of the generic template jkqtp_todouble ( ) with ( true - > 1.0 , false - > 0.0 )
*
* \ callergraph
*/
template < >
inline constexpr double jkqtp_todouble ( const bool & d ) {
return static_cast < double > ( ( d ) ? 1.0 : 0.0 ) ;
}
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!)
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param v the value to round and cast
*
* this is equivalent to
* \ code
* static_cast < T > ( round ( v ) ) ;
* \ endcode
*
* \ callergraph
*/
template < typename T >
inline T jkqtp_roundTo ( const double & v ) {
return static_cast < T > ( round ( v ) ) ;
}
2019-06-11 22:59:19 +08:00
/** \brief round a double \a v using ceil() and convert it to a specified type T (static_cast!)
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param v the value to ceil and cast
*
* this is equivalent to
* \ code
* static_cast < T > ( ceil ( v ) ) ;
* \ endcode
*
* \ callergraph
*/
template < typename T >
inline T jkqtp_ceilTo ( const double & v ) {
return static_cast < T > ( ceil ( v ) ) ;
}
/** \brief round a double \a v using trunc() and convert it to a specified type T (static_cast!)
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param v the value to trunc and cast
*
* this is equivalent to
* \ code
* static_cast < T > ( trunc ( v ) ) ;
* \ endcode
*
* \ callergraph
*/
template < typename T >
inline T jkqtp_truncTo ( const double & v ) {
return static_cast < T > ( trunc ( v ) ) ;
}
/** \brief round a double \a v using floor() and convert it to a specified type T (static_cast!)
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param v the value to floor and cast
*
* this is equivalent to
* \ code
* static_cast < T > ( floor ( v ) ) ;
* \ endcode
*
* \ callergraph
*/
template < typename T >
inline T jkqtp_floorTo ( const double & v ) {
return static_cast < T > ( floor ( v ) ) ;
}
2019-05-30 04:40:02 +08:00
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
* Finally the value is bounded to the range \ a min . . . \ a max
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param min minimum output value
* \ param v the value to round and cast
* \ param max maximum output value
*
* this is equivalent to
* \ code
* qBound ( min , static_cast < T > ( round ( v ) ) , max ) ;
* \ endcode
*/
template < typename T >
inline T jkqtp_boundedRoundTo ( T min , const double & v , T max ) {
return qBound ( min , static_cast < T > ( round ( v ) ) , max ) ;
}
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
* Finally the value is bounded to the range \ c std : : numeric_limits < T > : : min ( ) . . . \ c std : : numeric_limits < T > : : max ( )
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param v the value to round and cast
*
* this is equivalent to
* \ code
* jkqtp_boundedRoundTo < T > ( std : : numeric_limits < T > : : min ( ) , v , std : : numeric_limits < T > : : max ( ) )
* \ endcode
*/
template < typename T >
inline T jkqtp_boundedRoundTo ( const double & v ) {
return jkqtp_boundedRoundTo < T > ( std : : numeric_limits < T > : : min ( ) , v , std : : numeric_limits < T > : : max ( ) ) ;
}
/** \brief bounds a value \a v to the given range \a min ... \a max
* \ ingroup jkqtptools_math_basic
*
* \ tparam T a numeric datatype ( int , double , . . . )
* \ param min minimum output value
* \ param v the value to round and cast
* \ param max maximum output value
*/
template < typename T >
inline T jkqtp_bounded ( T min , T v , T max ) {
if ( v < min ) return min ;
if ( v > max ) return max ;
return v ;
}
/** \brief compare two floats \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
* \ ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyEqual ( float a , float b , float epsilon = 2.0f * JKQTP_FLOAT_EPSILON )
{
return fabsf ( a - b ) < = epsilon ;
}
/** \brief compare two doubles \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
* \ ingroup jkqtptools_math_basic */
inline bool jkqtp_approximatelyEqual ( double a , double b , double epsilon = 2.0 * JKQTP_DOUBLE_EPSILON )
{
return fabs ( a - b ) < = epsilon ;
}
/** \brief returns the given value \a v (i.e. identity function)
* \ ingroup jkqtptools_math_basic */
template < typename T >
inline T jkqtp_identity ( const T & v ) {
return v ;
}
/** \brief returns the quare of the value \a v, i.e. \c v*v
* \ ingroup jkqtptools_math_basic */
template < typename T >
inline T jkqtp_sqr ( const T & v ) {
return v * v ;
}
/*! \brief 4-th power of a number
\ ingroup jkqtptools_math_basic
*/
template < class T >
inline T jkqtp_pow4 ( T x ) {
const T xx = x * x ;
return xx * xx ;
}
/*! \brief cube of a number
\ ingroup jkqtptools_math_basic
*/
template < class T >
inline T jkqtp_cube ( T x ) {
return x * x * x ;
}
2019-06-02 00:15:04 +08:00
/*! \brief calculates the sign of number \a x (-1 for x<0 and +1 for x>=0)
2019-05-30 04:40:02 +08:00
\ ingroup jkqtptools_math_basic
*/
template < class T >
inline T jkqtp_sign ( T x ) {
if ( x < 0 ) return - 1 ;
else return 1 ;
}
2019-06-02 00:15:04 +08:00
/** \brief returns the inversely proportional value 1/\a v of \a v
* \ ingroup jkqtptools_math_basic */
template < typename T >
inline T jkqtp_inverseProp ( const T & v ) {
return T ( 1.0 ) / v ;
}
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$
* \ ingroup jkqtptools_math_basic */
template < typename T >
inline T jkqtp_inversePropSave ( const T & v , const T & absMinV ) {
T vv = v ;
if ( fabs ( vv ) < absMinV ) vv = jkqtp_sign ( v ) * absMinV ;
return T ( 1.0 ) / vv ;
}
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$, uses \c absMinV=std::numeric_limits<T>::epsilon()*100.0
* \ ingroup jkqtptools_math_basic */
template < typename T >
inline T jkqtp_inversePropSaveDefault ( const T & v ) {
return jkqtp_inversePropSave < T > ( v , std : : numeric_limits < T > : : epsilon ( ) * 100.0 ) ;
}
2019-05-30 04:40:02 +08:00
/** \brief calculate the distance between two QPointF points
* \ ingroup jkqtptools_math_basic
*
*/
inline double jkqtp_distance ( const QPointF & p1 , const QPointF & p2 ) {
return sqrt ( jkqtp_sqr < double > ( p1 . x ( ) - p2 . x ( ) ) + jkqtp_sqr < double > ( p1 . y ( ) - p2 . y ( ) ) ) ;
}
/** \brief calculate the distance between two QPoint points
* \ ingroup jkqtptools_math_basic
*
*/
inline double jkqtp_distance ( const QPoint & p1 , const QPoint & p2 ) {
return sqrt ( jkqtp_sqr < double > ( p1 . x ( ) - p2 . x ( ) ) + jkqtp_sqr < double > ( p1 . y ( ) - p2 . y ( ) ) ) ;
}
/** \brief check whether the dlotaing point number is OK (i.e. non-inf, non-NAN)
* \ ingroup jkqtptools_math_basic
*/
template < typename T >
inline bool JKQTPIsOKFloat ( T v ) {
return std : : isfinite ( v ) & & ( ! std : : isinf ( v ) ) & & ( ! std : : isnan ( v ) ) ;
}
/** \brief evaluates a gaussian propability density function
* \ ingroup jkqtptools_math_basic
*
* \ f [ f ( x , \ mu , \ sigma ) = \ frac { 1 } { \ sqrt { 2 \ pi \ sigma ^ 2 } } \ cdot \ exp \ left ( - \ frac { ( x - \ mu ) ^ 2 } { 2 \ sigma ^ 2 } \ right )
*/
inline double jkqtp_gaussdist ( double x , double mu = 0.0 , double sigma = 1.0 ) {
return exp ( - 0.5 * jkqtp_sqr ( x - mu ) / jkqtp_sqr ( sigma ) ) / sqrt ( 2.0 * M_PI * sigma * sigma ) ;
}
2019-06-02 21:38:09 +08:00
/*! \brief evaluate a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ with \f$ p_i \f$ taken from the range \a firstP ... \a lastP
\ ingroup jkqtptools_math_basic
\ tparam PolyItP iterator for the polynomial coefficients
\ param x where to evaluate
\ param firstP points to the first polynomial coefficient \ f $ p_1 \ f $ ( i . e . the offset with \ f $ x ^ 0 \ f $ )
\ param lastP points behind the last polynomial coefficient \ f $ p_P \ f $
\ return value of polynomial \ f $ f ( x ) = \ sum \ limits_ { i = 0 } ^ Pp_ix ^ i \ f $ at location \ a x
*/
template < class PolyItP >
inline double jkqtp_polyEval ( double x , PolyItP firstP , PolyItP lastP ) {
double v = 0.0 ;
double xx = 1.0 ;
for ( auto itP = firstP ; itP ! = lastP ; + + itP ) {
v = v + ( * itP ) * xx ;
xx = xx * x ;
}
return v ;
}
/*! \brief a C++-functor, which evaluates a polynomial
\ ingroup jkqtptools_math_basic
*/
struct JKQTPPolynomialFunctor {
std : : vector < double > P ;
template < class PolyItP >
inline JKQTPPolynomialFunctor ( PolyItP firstP , PolyItP lastP ) {
for ( auto itP = firstP ; itP ! = lastP ; + + itP ) {
P . push_back ( * itP ) ;
}
}
inline double operator ( ) ( double x ) const { return jkqtp_polyEval ( x , P . begin ( ) , P . end ( ) ) ; }
} ;
/*! \brief returns a C++-functor, which evaluates a polynomial
\ ingroup jkqtptools_math_basic
\ tparam PolyItP iterator for the polynomial coefficients
\ param firstP points to the first polynomial coefficient \ f $ p_1 \ f $ ( i . e . the offset with \ f $ x ^ 0 \ f $ )
\ param lastP points behind the last polynomial coefficient \ f $ p_P \ f $
*/
template < class PolyItP >
inline std : : function < double ( double ) > jkqtp_generatePolynomialModel ( PolyItP firstP , PolyItP lastP ) {
return JKQTPPolynomialFunctor ( firstP , lastP ) ;
}
/*! \brief Generates a LaTeX string for the polynomial model with the coefficients \a firstP ... \a lastP
\ ingroup jkqtptools_math_basic
\ tparam PolyItP iterator for the polynomial coefficients
\ param firstP points to the first polynomial coefficient \ f $ p_1 \ f $ ( i . e . the offset with \ f $ x ^ 0 \ f $ )
\ param lastP points behind the last polynomial coefficient \ f $ p_P \ f $
*/
template < class PolyItP >
QString jkqtp_polynomialModel2Latex ( PolyItP firstP , PolyItP lastP ) {
QString str = " f(x)= " ;
size_t p = 0 ;
for ( auto itP = firstP ; itP ! = lastP ; + + itP ) {
if ( p = = 0 ) str + = jkqtp_floattolatexqstr ( * itP , 3 ) ;
else {
if ( * itP > = 0 ) str + = " + " ;
str + = QString ( " %2{ \\ cdot}x^{%1} " ) . arg ( p ) . arg ( jkqtp_floattolatexqstr ( * itP , 3 ) ) ;
}
p + + ;
}
return str ;
}
2019-05-30 04:40:02 +08:00
# endif // jkqtpmathtools_H_INCLUDED