JKQtPlotter/examples/simpletest_functionplot/README.md

120 lines
5.6 KiB
Markdown
Raw Normal View History

# Example (JKQTPlotter): Plotting Mathematical Functions as Line Graphs {#JKQTPlotterFunctionPlots}
## Basics
This project (see `./examples/simpletest_functionplot/`) demonstrates how to plot mathematical functions as line graphs. The functions may be defined as static C functions, C++ functors or c++ inline functions. See [test/simpletest_parsedfunctionplot](../simpletest_parsedfunctionplot) for an example of how to use an internal equation parser provided with JKQTPlotter instead of directly defining functions.
## Simple C++ inline function
The first example shows how to plot a C++ inline function:
2019-01-19 16:40:52 +08:00
```.cpp
JKQTPXFunctionLineGraph* func1=new JKQTPXFunctionLineGraph(plot);
func1->setPlotFunction([](double x) { return 0.2*x*x-0.015*x*x*x; });
func1->set_title("C++-inline function $0.2x^2-0.015x^3$");
plot->addGraph(func1);
```
## Simple C++ inline function with parameters
In any such plot function, you can also use parameters, provided via the second parameter. Usually these are "internal parameters", defined by `func2->set_paramsV(p0, p1, ...)`:
2019-01-19 16:40:52 +08:00
```.cpp
JKQTPXFunctionLineGraph* func2=new JKQTPXFunctionLineGraph(plot);
func2->setPlotFunction([](double x, void* params) {
QVector<double>* p=static_cast<QVector<double>*>(params);
return p->at(0)*sin(2.0*M_PI*x*p->at(1));
});
// here we set the parameters p0, p1
func2->set_paramsV(5, 0.2);
func2->set_title("C++-inline function with int. params $p_0\\cdot\\sin(x*2.0*\\pi\\cdot p_1)$");
plot->addGraph(func2);
```
... but generally any pointer can be used as parameter (the set by `set_parameter(static_cast<void*>(myDataObject))`):
2019-01-19 16:40:52 +08:00
```.cpp
JKQTPXFunctionLineGraph* func3=new JKQTPXFunctionLineGraph(plot);
func3->setPlotFunction([](double x, void* params) {
QMap<QString,double>* p=static_cast<QMap<QString,double>*>(params);
return p->value("amplitude")*sin(2.0*M_PI*x*p->value("frequency"));
});
// here we set the parameters p0, p1
QMap<QString,double> params3;
params3["amplitude"]=-3;
params3["frequency"]=0.3;
func3->set_params(&params3);
func3->set_title("C++-inline function with ext. params $p_0\\cdot\\sin(x*2.0*\\pi\\cdot p_1)$");
plot->addGraph(func3);
```
## C++ functors as plot functions
You can also use C++ functors (or function objects):
2019-01-19 16:40:52 +08:00
```.cpp
2018-12-24 03:28:38 +08:00
struct SincSqr {
public:
inline SincSqr(double amplitude): a(amplitude) {}
inline double operator()(double x) {
2018-12-24 03:28:38 +08:00
return a*sin(x)*sin(x)/x/x;
}
private:
double a;
};
// ...
JKQTPXFunctionLineGraph* func4=new JKQTPXFunctionLineGraph(plot);
func4->setPlotFunction(SincSqr(-8));
func4->set_title("C++ functor $-8*\\sin^2(x)/x^2$");
plot->addGraph(func4);
```
## Static C functions
You can also plot simple static C functions:
2019-01-19 16:40:52 +08:00
```.cpp
double sinc(double x) {
2018-12-24 03:28:38 +08:00
return 10.0*sin(x)/x;
}
// ...
JKQTPXFunctionLineGraph* func5=new JKQTPXFunctionLineGraph(plot);
func5->setPlotFunction(&sinc);
func5->set_title("static C function $10*\\sin(x)/x$");
plot->addGraph(func5);
```
## Predefined "special" functions
Finally `JKQTPXFunctionLineGraph` provides a small set of special functions (polynomial `p0+p1*x+p2*x^2+...`, exponential `p0+p1*exp(x/p2)`, power-law `p0+p1*x^p2`, ...), which are parametrized from the internal or external parameters:
2019-01-19 16:40:52 +08:00
```.cpp
JKQTPXFunctionLineGraph* func6=new JKQTPXFunctionLineGraph(plot);
func6->setSpecialFunction(JKQTPXFunctionLineGraph::Line);
// here we set offset p0=-1 and slope p1=1.5 of the line p0+p1*x
func6->set_paramsV(-1,1.5);
func6->set_title("special function: linear");
plot->addGraph(func6);
```
To demonstrate how to use parameters from a datastore column, have a look at the next example. It is derived from the special-function plot above, but adds a line with a different offset and slope and reads the parameters from a datastore column `paramCol`, which is initialized from the vector `params`:
2019-01-19 16:40:52 +08:00
```.cpp
JKQTPXFunctionLineGraph* func7=new JKQTPXFunctionLineGraph(plot);
func7->setSpecialFunction(JKQTPXFunctionLineGraph::Line);
// here we set offset p0=1 and slope p1=-1.5 of the line p0+p1*x by adding these into a column
// in the internal datastore and then set that column as parameterColumn for the function graph
QVector<double> params;
params << /*p0=*/1 << /*p1=*/-1.5;
size_t paramCol=plot->getDatastore()->addCopiedColumn(params);
func7->set_parameterColumn(paramCol);
func7->set_title("special function: linear");
plot->addGraph(func7);
```
## Screenshot
This code snippets above result in a plot like this:
2019-01-12 20:43:12 +08:00
![jkqtplotter_simpletest_functionplot](../../screenshots/jkqtplotter_simpletest_functionplot.png)
## Notes
Note that all the different variants to provide parameters can be used with all types of functions!
Also see the example [Plotting Parsed Mathematical Functions as Line Graphs](../simpletest_parsedfunctionplot) for details on how the actual plotting algorithm works. That example also shows how to define a function as a string, which is then parsed and evaluated by an expression parser library embedded in JKQTPlotter.
All examples above use the graph class `JKQTPXFunctionLineGraph`, which plots a function `y=f(x)`. If you want to plot a function `x=f(y)`, you can use the class `JKQTPYFunctionLineGraph` instead. If in the examples above, we exchange all `JKQTPXFunctionLineGraph` for `JKQTPYFunctionLineGraph`, the graphs will be rotated by 90 degree, as all functions are interpreted as `x=f(y)`:
2019-01-12 20:43:12 +08:00
![jkqtplotter_simpletest_functionplot_fy](../../screenshots/jkqtplotter_simpletest_functionplot_fy.png)