removed debug printf

This commit is contained in:
gabime 2018-05-19 16:12:22 +03:00
parent b1a58cd342
commit 314afa7dbb

View File

@ -14,11 +14,12 @@
#include "../common.h" #include "../common.h"
#include "../details/log_msg.h" #include "../details/log_msg.h"
#include "../details/mpmc_bounded_q.h" #include "../details/mpmc_blocking_q.h"
#include "../details/os.h" #include "../details/os.h"
#include "../formatter.h" #include "../formatter.h"
#include "../sinks/sink.h" #include "../sinks/sink.h"
#include<iostream>
#include <chrono> #include <chrono>
#include <exception> #include <exception>
#include <functional> #include <functional>
@ -27,367 +28,332 @@
#include <thread> #include <thread>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <condition_variable>
namespace spdlog { namespace spdlog {
namespace details { namespace details {
class async_log_helper class async_log_helper
{ {
// Async msg to move to/from the queue // Async msg to move to/from the queue
// Movable only. should never be copied // Movable only. should never be copied
enum class async_msg_type enum class async_msg_type
{ {
log, log,
flush, flush,
terminate terminate
}; };
struct async_msg struct async_msg
{ {
std::string logger_name; std::string logger_name;
level::level_enum level; level::level_enum level;
log_clock::time_point time; log_clock::time_point time;
size_t thread_id; size_t thread_id;
std::string txt; std::string txt;
async_msg_type msg_type; async_msg_type msg_type;
size_t msg_id; size_t msg_id;
async_msg() = default; async_msg() = default;
~async_msg() = default; ~async_msg() = default;
explicit async_msg(async_msg_type m_type) explicit async_msg(async_msg_type m_type)
: level(level::info) : level(level::info)
, thread_id(0) , thread_id(0)
, msg_type(m_type) , msg_type(m_type)
, msg_id(0) , msg_id(0)
{ {
} }
async_msg(async_msg &&other) SPDLOG_NOEXCEPT : logger_name(std::move(other.logger_name)), async_msg(async_msg &&other) SPDLOG_NOEXCEPT : logger_name(std::move(other.logger_name)),
level(std::move(other.level)), level(std::move(other.level)),
time(std::move(other.time)), time(std::move(other.time)),
thread_id(other.thread_id), thread_id(other.thread_id),
txt(std::move(other.txt)), txt(std::move(other.txt)),
msg_type(std::move(other.msg_type)), msg_type(std::move(other.msg_type)),
msg_id(other.msg_id) msg_id(other.msg_id)
{ {
} }
async_msg &operator=(async_msg &&other) SPDLOG_NOEXCEPT async_msg &operator=(async_msg &&other) SPDLOG_NOEXCEPT
{ {
logger_name = std::move(other.logger_name); logger_name = std::move(other.logger_name);
level = other.level; level = other.level;
time = std::move(other.time); time = std::move(other.time);
thread_id = other.thread_id; thread_id = other.thread_id;
txt = std::move(other.txt); txt = std::move(other.txt);
msg_type = other.msg_type; msg_type = other.msg_type;
msg_id = other.msg_id; msg_id = other.msg_id;
return *this; return *this;
} }
// never copy or assign. should only be moved.. // never copy or assign. should only be moved..
async_msg(const async_msg &) = delete; async_msg(const async_msg &) = delete;
async_msg &operator=(const async_msg &other) = delete; async_msg &operator=(const async_msg &other) = delete;
// construct from log_msg // construct from log_msg
explicit async_msg(const details::log_msg &m) explicit async_msg(const details::log_msg &m)
: level(m.level) : level(m.level)
, time(m.time) , time(m.time)
, thread_id(m.thread_id) , thread_id(m.thread_id)
, txt(m.raw.data(), m.raw.size()) , txt(m.raw.data(), m.raw.size())
, msg_type(async_msg_type::log) , msg_type(async_msg_type::log)
, msg_id(m.msg_id) , msg_id(m.msg_id)
{ {
#ifndef SPDLOG_NO_NAME #ifndef SPDLOG_NO_NAME
logger_name = *m.logger_name; logger_name = *m.logger_name;
#endif #endif
} }
// copy into log_msg // copy into log_msg
void fill_log_msg(log_msg &msg) void fill_log_msg(log_msg &msg)
{ {
msg.logger_name = &logger_name; msg.logger_name = &logger_name;
msg.level = level; msg.level = level;
msg.time = time; msg.time = time;
msg.thread_id = thread_id; msg.thread_id = thread_id;
msg.raw << txt; msg.raw << txt;
msg.msg_id = msg_id; msg.msg_id = msg_id;
} }
}; };
public: public:
using item_type = async_msg; using item_type = async_msg;
using q_type = details::mpmc_bounded_queue<item_type>; using q_type = details::mpmc_bounded_queue <item_type>;
using clock = std::chrono::steady_clock; using clock = std::chrono::steady_clock;
async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size, const log_err_handler err_handler, async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size, const log_err_handler err_handler,
const async_overflow_policy overflow_policy = async_overflow_policy::block_retry, std::function<void()> worker_warmup_cb = nullptr, const async_overflow_policy overflow_policy = async_overflow_policy::block_retry, std::function<void()> worker_warmup_cb = nullptr,
const std::chrono::milliseconds &flush_interval_ms = std::chrono::milliseconds::zero(), const std::chrono::milliseconds &flush_interval_ms = std::chrono::milliseconds::zero(),
std::function<void()> worker_teardown_cb = nullptr); std::function<void()> worker_teardown_cb = nullptr);
void log(const details::log_msg &msg); void log(const details::log_msg &msg);
// stop logging and join the back thread // stop logging and join the back thread
~async_log_helper(); ~async_log_helper();
async_log_helper(const async_log_helper &) = delete; async_log_helper(const async_log_helper &) = delete;
async_log_helper &operator=(const async_log_helper &) = delete; async_log_helper &operator=(const async_log_helper &) = delete;
void set_formatter(formatter_ptr msg_formatter); void set_formatter(formatter_ptr msg_formatter);
void flush(bool wait_for_q); void flush();
void set_error_handler(spdlog::log_err_handler err_handler); void set_error_handler(spdlog::log_err_handler err_handler);
private: private:
formatter_ptr _formatter; formatter_ptr _formatter;
std::vector<std::shared_ptr<sinks::sink>> _sinks; std::vector<std::shared_ptr<sinks::sink>> _sinks;
// queue of messages to log // queue of messages to log
q_type _q; q_type _q;
log_err_handler _err_handler; log_err_handler _err_handler;
bool _flush_requested; std::chrono::time_point<log_clock> _last_flush;
bool _terminate_requested; // overflow policy
const async_overflow_policy _overflow_policy;
// overflow policy // worker thread warmup callback - one can set thread priority, affinity, etc
const async_overflow_policy _overflow_policy; const std::function<void()> _worker_warmup_cb;
// worker thread warmup callback - one can set thread priority, affinity, etc // auto periodic sink flush parameter
const std::function<void()> _worker_warmup_cb; const std::chrono::milliseconds _flush_interval_ms;
// auto periodic sink flush parameter // worker thread teardown callback
const std::chrono::milliseconds _flush_interval_ms; const std::function<void()> _worker_teardown_cb;
// worker thread teardown callback std::mutex null_mutex_;
const std::function<void()> _worker_teardown_cb; //null_mutex null_mutex_;
std::condition_variable_any not_empty_cv_;
std::condition_variable_any not_full_cv_;
// worker thread // worker thread
std::thread _worker_thread; std::thread _worker_thread;
void push_msg(async_msg &&new_msg); void enqueue_msg(async_msg &&new_msg, async_overflow_policy policy);
// worker thread main loop // worker thread main loop
void worker_loop(); void worker_loop();
// pop next message from the queue and process it. will set the last_pop to the pop time // dequeue next message from the queue and process it.
// return false if termination of the queue is required // return false if termination of the queue is required
bool process_next_msg(log_clock::time_point &last_pop, log_clock::time_point &last_flush); bool process_next_msg();
void handle_flush_interval(log_clock::time_point &now, log_clock::time_point &last_flush); void handle_flush_interval();
// sleep,yield or return immediately using the time passed since last message as a hint void flush_sinks();
static void sleep_or_yield(const spdlog::log_clock::time_point &now, const log_clock::time_point &last_op_time);
};
// wait until the queue is empty } // namespace details
void wait_empty_q();
};
} // namespace details
} // namespace spdlog } // namespace spdlog
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// async_sink class implementation // async_sink class implementation
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
inline spdlog::details::async_log_helper::async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size, inline spdlog::details::async_log_helper::async_log_helper(formatter_ptr formatter, std::vector<sink_ptr> sinks, size_t queue_size,
log_err_handler err_handler, const async_overflow_policy overflow_policy, std::function<void()> worker_warmup_cb, log_err_handler err_handler, const async_overflow_policy overflow_policy, std::function<void()> worker_warmup_cb,
const std::chrono::milliseconds &flush_interval_ms, std::function<void()> worker_teardown_cb) const std::chrono::milliseconds &flush_interval_ms, std::function<void()> worker_teardown_cb)
: _formatter(std::move(formatter)) : _formatter(std::move(formatter))
, _sinks(std::move(sinks)) , _sinks(std::move(sinks))
, _q(queue_size) , _q(queue_size)
, _err_handler(std::move(err_handler)) , _err_handler(std::move(err_handler))
, _flush_requested(false) , _last_flush(os::now())
, _terminate_requested(false) , _overflow_policy(overflow_policy)
, _overflow_policy(overflow_policy) , _worker_warmup_cb(std::move(worker_warmup_cb))
, _worker_warmup_cb(std::move(worker_warmup_cb)) , _flush_interval_ms(flush_interval_ms)
, _flush_interval_ms(flush_interval_ms) , _worker_teardown_cb(std::move(worker_teardown_cb))
, _worker_teardown_cb(std::move(worker_teardown_cb))
{ {
_worker_thread = std::thread(&async_log_helper::worker_loop, this); _worker_thread = std::thread(&async_log_helper::worker_loop, this);
} }
// Send to the worker thread termination message(level=off) // Send to the worker thread termination message(level=off)
// and wait for it to finish gracefully // and wait for it to finish gracefully
inline spdlog::details::async_log_helper::~async_log_helper() inline spdlog::details::async_log_helper::~async_log_helper()
{ {
try try
{ {
push_msg(async_msg(async_msg_type::terminate)); enqueue_msg(async_msg(async_msg_type::terminate), async_overflow_policy::block_retry);
_worker_thread.join(); _worker_thread.join();
} }
catch (...) // don't crash in destructor catch (...) // don't crash in destructor
{ {
} }
} }
// Try to push and block until succeeded (if the policy is not to discard when the queue is full) // Try to push and block until succeeded (if the policy is not to discard when the queue is full)
inline void spdlog::details::async_log_helper::log(const details::log_msg &msg) inline void spdlog::details::async_log_helper::log(const details::log_msg &msg)
{ {
push_msg(async_msg(msg)); enqueue_msg(async_msg(msg), _overflow_policy);
} }
inline void spdlog::details::async_log_helper::push_msg(details::async_log_helper::async_msg &&new_msg) inline void spdlog::details::async_log_helper::enqueue_msg(details::async_log_helper::async_msg &&new_msg, async_overflow_policy policy)
{ {
if (!_q.enqueue(std::move(new_msg)) && _overflow_policy != async_overflow_policy::discard_log_msg)
{ // block until succeeded pushing to the queue
auto last_op_time = details::os::now(); if (policy == async_overflow_policy::block_retry)
auto now = last_op_time; {
do _q.enqueue(std::move(new_msg));
{ }
now = details::os::now(); else
sleep_or_yield(now, last_op_time); {
} while (!_q.enqueue(std::move(new_msg))); _q.enqueue_nowait(std::move(new_msg));
} }
} }
// optionally wait for the queue be empty and request flush from the sinks // optionally wait for the queue be empty and request flush from the sinks
inline void spdlog::details::async_log_helper::flush(bool wait_for_q) inline void spdlog::details::async_log_helper::flush()
{ {
push_msg(async_msg(async_msg_type::flush)); enqueue_msg(async_msg(async_msg_type::flush), _overflow_policy);
if (wait_for_q)
{
wait_empty_q(); // return when queue is empty
}
} }
inline void spdlog::details::async_log_helper::worker_loop() inline void spdlog::details::async_log_helper::worker_loop()
{ {
if (_worker_warmup_cb) if (_worker_warmup_cb)
{ {
_worker_warmup_cb(); _worker_warmup_cb();
} }
auto last_pop = details::os::now(); auto active = true;
auto last_flush = last_pop; while (active)
auto active = true; {
while (active) try
{ {
try active = process_next_msg();
{ }
active = process_next_msg(last_pop, last_flush); catch (const std::exception &ex)
} {
catch (const std::exception &ex) _err_handler(ex.what());
{ }
_err_handler(ex.what()); catch (...)
} {
catch (...) _err_handler("Unknown exeption in async logger worker loop.");
{ }
_err_handler("Unknown exeption in async logger worker loop."); }
} if (_worker_teardown_cb)
} {
if (_worker_teardown_cb) _worker_teardown_cb();
{ }
_worker_teardown_cb();
}
} }
// process next message in the queue // process next message in the queue
// return true if this thread should still be active (while no terminate msg was received) // return true if this thread should still be active (while no terminate msg was received)
inline bool spdlog::details::async_log_helper::process_next_msg(log_clock::time_point &last_pop, log_clock::time_point &last_flush) inline bool spdlog::details::async_log_helper::process_next_msg()
{ {
async_msg incoming_async_msg; async_msg incoming_async_msg;
bool dequeued = _q.dequeue_for(incoming_async_msg, std::chrono::milliseconds(1000));
if (!dequeued)
{
handle_flush_interval();
return true;
}
switch (incoming_async_msg.msg_type)
{
case async_msg_type::flush:
flush_sinks();
return true;
if (_q.dequeue(incoming_async_msg)) case async_msg_type::terminate:
{ //flush_sinks();
last_pop = details::os::now(); return false;
switch (incoming_async_msg.msg_type)
{
case async_msg_type::flush:
_flush_requested = true;
break;
case async_msg_type::terminate: default:
_flush_requested = true; log_msg incoming_log_msg;
_terminate_requested = true; incoming_async_msg.fill_log_msg(incoming_log_msg);
break; _formatter->format(incoming_log_msg);
for (auto &s : _sinks)
{
if (s->should_log(incoming_log_msg.level))
{
s->log(incoming_log_msg);
}
}
return true;
}
assert(false);
return true; // should not be reached
default:
log_msg incoming_log_msg;
incoming_async_msg.fill_log_msg(incoming_log_msg);
_formatter->format(incoming_log_msg);
for (auto &s : _sinks)
{
if (s->should_log(incoming_log_msg.level))
{
s->log(incoming_log_msg);
}
}
}
return true;
}
// Handle empty queue..
// This is the only place where the queue can terminate or flush to avoid losing messages already in the queue
auto now = details::os::now();
handle_flush_interval(now, last_flush);
sleep_or_yield(now, last_pop);
return !_terminate_requested;
} }
// flush all sinks if _flush_interval_ms has expired // flush all sinks if _flush_interval_ms has expired. only called if queue is empty
inline void spdlog::details::async_log_helper::handle_flush_interval(log_clock::time_point &now, log_clock::time_point &last_flush) inline void spdlog::details::async_log_helper::handle_flush_interval()
{ {
auto should_flush = if (_flush_interval_ms == std::chrono::milliseconds::zero())
_flush_requested || (_flush_interval_ms != std::chrono::milliseconds::zero() && now - last_flush >= _flush_interval_ms); {
if (should_flush) return;
{ }
for (auto &s : _sinks) auto delta = details::os::now() - _last_flush;;
{ if (delta >= _flush_interval_ms)
s->flush(); {
} flush_sinks();
now = last_flush = details::os::now(); }
_flush_requested = false;
}
} }
inline void spdlog::details::async_log_helper::set_formatter(formatter_ptr msg_formatter) inline void spdlog::details::async_log_helper::set_formatter(formatter_ptr msg_formatter)
{ {
_formatter = std::move(msg_formatter); _formatter = std::move(msg_formatter);
} }
// spin, yield or sleep. use the time passed since last message as a hint
inline void spdlog::details::async_log_helper::sleep_or_yield(
const spdlog::log_clock::time_point &now, const spdlog::log_clock::time_point &last_op_time)
{
using std::chrono::microseconds;
using std::chrono::milliseconds;
auto time_since_op = now - last_op_time;
// spin upto 50 micros
if (time_since_op <= microseconds(50))
{
return;
}
// yield upto 150 micros
if (time_since_op <= microseconds(100))
{
return std::this_thread::yield();
}
// sleep for 20 ms upto 200 ms
if (time_since_op <= milliseconds(200))
{
return details::os::sleep_for_millis(20);
}
// sleep for 500 ms
return details::os::sleep_for_millis(500);
}
// wait for the queue to be empty
inline void spdlog::details::async_log_helper::wait_empty_q()
{
auto last_op = details::os::now();
while (!_q.is_empty())
{
sleep_or_yield(details::os::now(), last_op);
}
}
inline void spdlog::details::async_log_helper::set_error_handler(spdlog::log_err_handler err_handler) inline void spdlog::details::async_log_helper::set_error_handler(spdlog::log_err_handler err_handler)
{ {
_err_handler = std::move(err_handler); _err_handler = std::move(err_handler);
} }
// flush all sinks if _flush_interval_ms has expired. only called if queue is empty
inline void spdlog::details::async_log_helper::flush_sinks()
{
for (auto &s : _sinks)
{
s->flush();
}
_last_flush = os::now();
}