luau/Common/include/Luau/Variant.h
Alexander McCord e1bf6289c7
Equality graphs (#1285)
Working towards a full e-graph implementation as described by the [egg
paper](https://arxiv.org/pdf/2004.03082).

The type system has a couple of places where e-graphs would've been
useful and solved some classes of problems trivially. For example:

1. Normalization and simplification cannot handle cyclic types due to
the nature of their implementation.
2. Normalization can't tell when two tables or functions are equivalent,
but simplification theoretically can albeit not implemented.
3. Normalization requires deep normalization for inhabitance check,
whereas simplification would've returned the `never` type itself
indicating uninhabited.
4. Simplification requires constraint ordering to have perfect timing to
simplify.
5. Adding a rewrite rule requires implementing it twice, once in
simplification and once again in normalization with completely different
code design making it hard to verify that their behavior is materially
equivalent.
6. In cases where we must cache for performance, two different types
that are isomorphic have different cache entries resulting in cache
misses.
7. Type family reduction can handle cyclic type families, but only if
the cycle is not obscured by a different type family instance. (`t1
where t1 = union<number, add<t1, number>>` is irreducible)

I think we're getting the point!

---

Currently the implementation is missing a few features that makes
e-graphs actually useful. Those will be coming in a future PR.

1. Pattern matching,
6. Applying rewrites,
7. Rewrite until saturation, and
8. Extracting the best e-node according to some cost function.
2024-07-16 10:35:20 -07:00

294 lines
8.3 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <initializer_list>
#include <new>
#include <type_traits>
#include <utility>
#include <stddef.h>
namespace Luau
{
template<typename... Ts>
class Variant
{
static_assert(sizeof...(Ts) > 0, "variant must have at least 1 type (empty variants are ill-formed)");
static_assert(std::disjunction_v<std::is_void<Ts>...> == false, "variant does not allow void as an alternative type");
static_assert(std::disjunction_v<std::is_reference<Ts>...> == false, "variant does not allow references as an alternative type");
static_assert(std::disjunction_v<std::is_array<Ts>...> == false, "variant does not allow arrays as an alternative type");
private:
template<typename T>
static constexpr int getTypeId()
{
using TT = std::decay_t<T>;
constexpr int N = sizeof...(Ts);
constexpr bool is[N] = {std::is_same_v<TT, Ts>...};
for (int i = 0; i < N; ++i)
if (is[i])
return i;
return -1;
}
template<typename T, typename... Tail>
struct First
{
using type = T;
};
public:
using first_alternative = typename First<Ts...>::type;
template<typename T>
static constexpr bool is_part_of_v = std::disjunction_v<typename std::is_same<std::decay_t<Ts>, T>...>;
Variant()
{
static_assert(std::is_default_constructible_v<first_alternative>, "first alternative type must be default constructible");
typeId = 0;
new (&storage) first_alternative();
}
template<typename T>
Variant(T&& value, std::enable_if_t<getTypeId<T>() >= 0>* = 0)
{
using TT = std::decay_t<T>;
constexpr int tid = getTypeId<T>();
typeId = tid;
new (&storage) TT(std::forward<T>(value));
}
Variant(const Variant& other)
{
static constexpr FnCopy table[sizeof...(Ts)] = {&fnCopy<Ts>...};
typeId = other.typeId;
table[typeId](&storage, &other.storage);
}
Variant(Variant&& other)
{
typeId = other.typeId;
tableMove[typeId](&storage, &other.storage);
}
~Variant()
{
tableDtor[typeId](&storage);
}
Variant& operator=(const Variant& other)
{
Variant copy(other);
// static_cast<T&&> is equivalent to std::move() but faster in Debug
return *this = static_cast<Variant&&>(copy);
}
Variant& operator=(Variant&& other)
{
if (this != &other)
{
tableDtor[typeId](&storage);
typeId = other.typeId;
tableMove[typeId](&storage, &other.storage); // nothrow
}
return *this;
}
template<typename T, typename... Args>
T& emplace(Args&&... args)
{
using TT = std::decay_t<T>;
constexpr int tid = getTypeId<T>();
static_assert(tid >= 0, "unsupported T");
tableDtor[typeId](&storage);
typeId = tid;
new (&storage) TT{std::forward<Args>(args)...};
return *reinterpret_cast<T*>(&storage);
}
template<typename T>
const T* get_if() const
{
constexpr int tid = getTypeId<T>();
static_assert(tid >= 0, "unsupported T");
return tid == typeId ? reinterpret_cast<const T*>(&storage) : nullptr;
}
template<typename T>
T* get_if()
{
constexpr int tid = getTypeId<T>();
static_assert(tid >= 0, "unsupported T");
return tid == typeId ? reinterpret_cast<T*>(&storage) : nullptr;
}
bool valueless_by_exception() const
{
return false;
}
int index() const
{
return typeId;
}
bool operator==(const Variant& other) const
{
static constexpr FnPred table[sizeof...(Ts)] = {&fnPredEq<Ts>...};
return typeId == other.typeId && table[typeId](&storage, &other.storage);
}
bool operator!=(const Variant& other) const
{
return !(*this == other);
}
private:
static constexpr size_t cmax(std::initializer_list<size_t> l)
{
size_t res = 0;
for (size_t i : l)
res = (res < i) ? i : res;
return res;
}
static constexpr size_t storageSize = cmax({sizeof(Ts)...});
static constexpr size_t storageAlign = cmax({alignof(Ts)...});
using FnCopy = void (*)(void*, const void*);
using FnMove = void (*)(void*, void*);
using FnDtor = void (*)(void*);
using FnPred = bool (*)(const void*, const void*);
template<typename T>
static void fnCopy(void* dst, const void* src)
{
new (dst) T(*static_cast<const T*>(src));
}
template<typename T>
static void fnMove(void* dst, void* src)
{
// static_cast<T&&> is equivalent to std::move() but faster in Debug
new (dst) T(static_cast<T&&>(*static_cast<T*>(src)));
}
template<typename T>
static void fnDtor(void* dst)
{
static_cast<T*>(dst)->~T();
}
template<typename T>
static bool fnPredEq(const void* lhs, const void* rhs)
{
return *static_cast<const T*>(lhs) == *static_cast<const T*>(rhs);
}
static constexpr FnMove tableMove[sizeof...(Ts)] = {&fnMove<Ts>...};
static constexpr FnDtor tableDtor[sizeof...(Ts)] = {&fnDtor<Ts>...};
int typeId;
alignas(storageAlign) char storage[storageSize];
template<class Visitor, typename... _Ts>
friend auto visit(Visitor&& vis, const Variant<_Ts...>& var);
template<class Visitor, typename... _Ts>
friend auto visit(Visitor&& vis, Variant<_Ts...>& var);
};
template<typename T, typename... Ts>
const T* get_if(const Variant<Ts...>* var)
{
return var ? var->template get_if<T>() : nullptr;
}
template<typename T, typename... Ts>
T* get_if(Variant<Ts...>* var)
{
return var ? var->template get_if<T>() : nullptr;
}
template<typename Visitor, typename Result, typename T>
static void fnVisitR(Visitor& vis, Result& dst, std::conditional_t<std::is_const_v<T>, const void, void>* src)
{
dst = vis(*static_cast<T*>(src));
}
template<typename Visitor, typename T>
static void fnVisitV(Visitor& vis, std::conditional_t<std::is_const_v<T>, const void, void>* src)
{
vis(*static_cast<T*>(src));
}
template<class Visitor, typename... Ts>
auto visit(Visitor&& vis, const Variant<Ts...>& var)
{
static_assert(std::conjunction_v<std::is_invocable<Visitor, Ts>...>, "visitor must accept every alternative as an argument");
using Result = std::invoke_result_t<Visitor, typename Variant<Ts...>::first_alternative>;
static_assert(std::conjunction_v<std::is_same<Result, std::invoke_result_t<Visitor, Ts>>...>,
"visitor result type must be consistent between alternatives");
if constexpr (std::is_same_v<Result, void>)
{
using FnVisitV = void (*)(Visitor&, const void*);
static const FnVisitV tableVisit[sizeof...(Ts)] = {&fnVisitV<Visitor, const Ts>...};
tableVisit[var.typeId](vis, &var.storage);
}
else
{
using FnVisitR = void (*)(Visitor&, Result&, const void*);
static const FnVisitR tableVisit[sizeof...(Ts)] = {&fnVisitR<Visitor, Result, const Ts>...};
Result res;
tableVisit[var.typeId](vis, res, &var.storage);
return res;
}
}
template<class Visitor, typename... Ts>
auto visit(Visitor&& vis, Variant<Ts...>& var)
{
static_assert(std::conjunction_v<std::is_invocable<Visitor, Ts&>...>, "visitor must accept every alternative as an argument");
using Result = std::invoke_result_t<Visitor, typename Variant<Ts...>::first_alternative&>;
static_assert(std::conjunction_v<std::is_same<Result, std::invoke_result_t<Visitor, Ts&>>...>,
"visitor result type must be consistent between alternatives");
if constexpr (std::is_same_v<Result, void>)
{
using FnVisitV = void (*)(Visitor&, void*);
static const FnVisitV tableVisit[sizeof...(Ts)] = {&fnVisitV<Visitor, Ts>...};
tableVisit[var.typeId](vis, &var.storage);
}
else
{
using FnVisitR = void (*)(Visitor&, Result&, void*);
static const FnVisitR tableVisit[sizeof...(Ts)] = {&fnVisitR<Visitor, Result, Ts>...};
Result res;
tableVisit[var.typeId](vis, res, &var.storage);
return res;
}
}
template<class>
inline constexpr bool always_false_v = false;
} // namespace Luau