mirror of
https://github.com/luau-lang/luau.git
synced 2024-11-16 06:45:44 +08:00
fe0a819472
### New Type Solver * Fixed crash in numeric binary operation type families * Results of an indexing operation are now comparable to `nil` without a false positive error * Fixed a crash when a type that failed normalization was accessed * Iterating on a free value now implies that it is iterable --- ### Internal Contributors Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: James McNellis <jmcnellis@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
451 lines
15 KiB
C++
451 lines
15 KiB
C++
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
#include "Luau/SharedCodeAllocator.h"
|
|
|
|
#include "Luau/CodeAllocator.h"
|
|
|
|
#include "luacode.h"
|
|
#include "luacodegen.h"
|
|
#include "lualib.h"
|
|
|
|
#include "doctest.h"
|
|
#include "ScopedFlags.h"
|
|
|
|
// We explicitly test correctness of self-assignment for some types
|
|
#ifdef __clang__
|
|
#pragma GCC diagnostic ignored "-Wself-assign-overloaded"
|
|
#endif
|
|
|
|
using namespace Luau::CodeGen;
|
|
|
|
|
|
constexpr size_t kBlockSize = 1024 * 1024;
|
|
constexpr size_t kMaxTotalSize = 1024 * 1024;
|
|
|
|
static const uint8_t fakeCode[1] = {0x00};
|
|
|
|
TEST_SUITE_BEGIN("SharedCodeAllocator");
|
|
|
|
TEST_CASE("NativeModuleRefRefcounting")
|
|
{
|
|
if (!luau_codegen_supported())
|
|
return;
|
|
|
|
CodeAllocator codeAllocator{kBlockSize, kMaxTotalSize};
|
|
SharedCodeAllocator allocator{&codeAllocator};
|
|
|
|
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
|
|
|
|
NativeModuleRef modRefA = allocator.getOrInsertNativeModule(ModuleId{0x0a}, {}, nullptr, 0, fakeCode, std::size(fakeCode)).first;
|
|
REQUIRE(!modRefA.empty());
|
|
|
|
// If we attempt to get the module again, we should get the same module back:
|
|
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).get() == modRefA.get());
|
|
|
|
// If we try to insert another instance of the module, we should get the
|
|
// existing module back:
|
|
REQUIRE(allocator.getOrInsertNativeModule(ModuleId{0x0a}, {}, nullptr, 0, fakeCode, std::size(fakeCode)).first.get() == modRefA.get());
|
|
|
|
// If we try to look up a different module, we should not get the existing
|
|
// module back:
|
|
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0b}).empty());
|
|
|
|
// (Insert a second module to help with validation below)
|
|
NativeModuleRef modRefB = allocator.getOrInsertNativeModule(ModuleId{0x0b}, {}, nullptr, 0, fakeCode, std::size(fakeCode)).first;
|
|
REQUIRE(!modRefB.empty());
|
|
REQUIRE(modRefB.get() != modRefA.get());
|
|
|
|
// Verify NativeModuleRef refcounting:
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef non-null copy construction:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
REQUIRE(modRef1.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null copy construction:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
NativeModuleRef modRef2{modRef1};
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.empty());
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef non-null move construction:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
NativeModuleRef modRef2{std::move(modRef1)};
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null move construction:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
NativeModuleRef modRef2{std::move(modRef1)};
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.empty());
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null -> non-null copy assignment:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
modRef1 = modRefA;
|
|
REQUIRE(modRef1.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null -> null copy assignment:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
NativeModuleRef modRef2{};
|
|
modRef2 = modRef1;
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.empty());
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef self copy assignment:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
modRef1 = modRef1;
|
|
REQUIRE(modRef1.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef non-null -> non-null copy assignment:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
NativeModuleRef modRef2{modRefB};
|
|
modRef2 = modRef1;
|
|
REQUIRE(modRef1.get() == modRefA.get());
|
|
REQUIRE(modRef2.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 3);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null -> non-null move assignment:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
NativeModuleRef modRef2{};
|
|
modRef2 = std::move(modRef1);
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null -> null move assignment:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
NativeModuleRef modRef2{};
|
|
modRef2 = std::move(modRef1);
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.empty());
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef self move assignment:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
modRef1 = std::move(modRef1);
|
|
REQUIRE(modRef1.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef non-null -> non-null move assignment:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
NativeModuleRef modRef2{modRefB};
|
|
modRef2 = std::move(modRef1);
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRef2.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef null reset:
|
|
{
|
|
NativeModuleRef modRef1{};
|
|
modRef1.reset();
|
|
REQUIRE(modRef1.empty());
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef non-null reset:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
modRef1.reset();
|
|
REQUIRE(modRef1.empty());
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// NativeModuleRef swap:
|
|
{
|
|
NativeModuleRef modRef1{modRefA};
|
|
NativeModuleRef modRef2{modRefB};
|
|
modRef1.swap(modRef2);
|
|
REQUIRE(modRef1.get() == modRefB.get());
|
|
REQUIRE(modRef2.get() == modRefA.get());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
REQUIRE(modRefB->getRefcount() == 2);
|
|
}
|
|
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
REQUIRE(modRefB->getRefcount() == 1);
|
|
|
|
// If we release the last reference to a module, it should destroy the
|
|
// module:
|
|
modRefA.reset();
|
|
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
|
|
}
|
|
|
|
TEST_CASE("NativeProtoRefcounting")
|
|
{
|
|
if (!luau_codegen_supported())
|
|
return;
|
|
|
|
CodeAllocator codeAllocator{kBlockSize, kMaxTotalSize};
|
|
SharedCodeAllocator allocator{&codeAllocator};
|
|
|
|
std::vector<NativeProtoExecDataPtr> nativeProtos;
|
|
nativeProtos.reserve(1);
|
|
NativeProtoExecDataPtr nativeProto = createNativeProtoExecData(0);
|
|
getNativeProtoExecDataHeader(nativeProto.get()).bytecodeId = 0x01;
|
|
nativeProtos.push_back(std::move(nativeProto));
|
|
|
|
NativeModuleRef modRefA =
|
|
allocator.getOrInsertNativeModule(ModuleId{0x0a}, std::move(nativeProtos), nullptr, 0, fakeCode, std::size(fakeCode)).first;
|
|
REQUIRE(!modRefA.empty());
|
|
REQUIRE(modRefA->getRefcount() == 1);
|
|
|
|
// Verify behavior of addRef:
|
|
modRefA->addRef();
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
|
|
// Verify behavior of addRefs:
|
|
modRefA->addRefs(2);
|
|
REQUIRE(modRefA->getRefcount() == 4);
|
|
|
|
// Undo two of our addRef(s):
|
|
modRefA->release();
|
|
REQUIRE(modRefA->getRefcount() == 3);
|
|
|
|
modRefA->release();
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
|
|
// If we release our NativeModuleRef, the module should be kept alive by
|
|
// the owning reference we acquired:
|
|
modRefA.reset();
|
|
|
|
modRefA = allocator.tryGetNativeModule(ModuleId{0x0a});
|
|
REQUIRE(!modRefA.empty());
|
|
REQUIRE(modRefA->getRefcount() == 2);
|
|
|
|
// If the last "release" comes via releaseOwningPointerToInstructionOffsets,
|
|
// the module should be successfully destroyed:
|
|
const NativeModule* rawModA = modRefA.get();
|
|
|
|
modRefA.reset();
|
|
rawModA->release();
|
|
REQUIRE(allocator.tryGetNativeModule(ModuleId{0x0a}).empty());
|
|
}
|
|
|
|
TEST_CASE("NativeProtoState")
|
|
{
|
|
if (!luau_codegen_supported())
|
|
return;
|
|
|
|
CodeAllocator codeAllocator{kBlockSize, kMaxTotalSize};
|
|
SharedCodeAllocator allocator{&codeAllocator};
|
|
|
|
const std::vector<uint8_t> data(16);
|
|
const std::vector<uint8_t> code(16);
|
|
|
|
std::vector<NativeProtoExecDataPtr> nativeProtos;
|
|
nativeProtos.reserve(2);
|
|
|
|
{
|
|
NativeProtoExecDataPtr nativeProto = createNativeProtoExecData(2);
|
|
getNativeProtoExecDataHeader(nativeProto.get()).bytecodeId = 1;
|
|
getNativeProtoExecDataHeader(nativeProto.get()).entryOffsetOrAddress = reinterpret_cast<const uint8_t*>(0x00);
|
|
nativeProto[0] = 0;
|
|
nativeProto[1] = 4;
|
|
|
|
nativeProtos.push_back(std::move(nativeProto));
|
|
}
|
|
|
|
{
|
|
NativeProtoExecDataPtr nativeProto = createNativeProtoExecData(2);
|
|
getNativeProtoExecDataHeader(nativeProto.get()).bytecodeId = 3;
|
|
getNativeProtoExecDataHeader(nativeProto.get()).entryOffsetOrAddress = reinterpret_cast<const uint8_t*>(0x08);
|
|
nativeProto[0] = 8;
|
|
nativeProto[1] = 12;
|
|
|
|
nativeProtos.push_back(std::move(nativeProto));
|
|
}
|
|
|
|
NativeModuleRef modRefA =
|
|
allocator.getOrInsertNativeModule(ModuleId{0x0a}, std::move(nativeProtos), data.data(), data.size(), code.data(), code.size()).first;
|
|
REQUIRE(!modRefA.empty());
|
|
REQUIRE(modRefA->getModuleBaseAddress() != nullptr);
|
|
|
|
const uint32_t* proto1 = modRefA->tryGetNativeProto(1);
|
|
REQUIRE(proto1 != nullptr);
|
|
REQUIRE(getNativeProtoExecDataHeader(proto1).bytecodeId == 1);
|
|
REQUIRE(getNativeProtoExecDataHeader(proto1).entryOffsetOrAddress == modRefA->getModuleBaseAddress() + 0x00);
|
|
REQUIRE(proto1[0] == 0);
|
|
REQUIRE(proto1[1] == 4);
|
|
|
|
const uint32_t* proto3 = modRefA->tryGetNativeProto(3);
|
|
REQUIRE(proto3 != nullptr);
|
|
REQUIRE(getNativeProtoExecDataHeader(proto3).bytecodeId == 3);
|
|
REQUIRE(getNativeProtoExecDataHeader(proto3).entryOffsetOrAddress == modRefA->getModuleBaseAddress() + 0x08);
|
|
REQUIRE(proto3[0] == 8);
|
|
REQUIRE(proto3[1] == 12);
|
|
|
|
// Ensure that non-existent native protos cannot be found:
|
|
REQUIRE(modRefA->tryGetNativeProto(0) == nullptr);
|
|
REQUIRE(modRefA->tryGetNativeProto(2) == nullptr);
|
|
REQUIRE(modRefA->tryGetNativeProto(4) == nullptr);
|
|
}
|
|
|
|
TEST_CASE("AnonymousModuleLifetime")
|
|
{
|
|
if (!luau_codegen_supported())
|
|
return;
|
|
|
|
CodeAllocator codeAllocator{kBlockSize, kMaxTotalSize};
|
|
SharedCodeAllocator allocator{&codeAllocator};
|
|
|
|
const std::vector<uint8_t> data(8);
|
|
const std::vector<uint8_t> code(8);
|
|
|
|
std::vector<NativeProtoExecDataPtr> nativeProtos;
|
|
nativeProtos.reserve(1);
|
|
|
|
{
|
|
NativeProtoExecDataPtr nativeProto = createNativeProtoExecData(2);
|
|
getNativeProtoExecDataHeader(nativeProto.get()).bytecodeId = 1;
|
|
getNativeProtoExecDataHeader(nativeProto.get()).entryOffsetOrAddress = reinterpret_cast<const uint8_t*>(0x00);
|
|
nativeProto[0] = 0;
|
|
nativeProto[1] = 4;
|
|
|
|
nativeProtos.push_back(std::move(nativeProto));
|
|
}
|
|
|
|
NativeModuleRef modRef = allocator.insertAnonymousNativeModule(std::move(nativeProtos), data.data(), data.size(), code.data(), code.size());
|
|
REQUIRE(!modRef.empty());
|
|
REQUIRE(modRef->getModuleBaseAddress() != nullptr);
|
|
REQUIRE(modRef->tryGetNativeProto(1) != nullptr);
|
|
REQUIRE(modRef->getRefcount() == 1);
|
|
|
|
const NativeModule* mod = modRef.get();
|
|
|
|
// Acquire a reference (as if we are binding it to a Luau VM Proto):
|
|
modRef->addRef();
|
|
REQUIRE(mod->getRefcount() == 2);
|
|
|
|
// Release our "owning" reference:
|
|
modRef.reset();
|
|
REQUIRE(mod->getRefcount() == 1);
|
|
|
|
// Release our added reference (as if the Luau VM Proto is being GC'ed):
|
|
mod->release();
|
|
|
|
// When we return and the sharedCodeAllocator is destroyed it will verify
|
|
// that there are no outstanding anonymous NativeModules.
|
|
}
|
|
|
|
TEST_CASE("SharedAllocation")
|
|
{
|
|
if (!luau_codegen_supported())
|
|
return;
|
|
|
|
UniqueSharedCodeGenContext sharedCodeGenContext = createSharedCodeGenContext();
|
|
|
|
std::unique_ptr<lua_State, void (*)(lua_State*)> L1{luaL_newstate(), lua_close};
|
|
std::unique_ptr<lua_State, void (*)(lua_State*)> L2{luaL_newstate(), lua_close};
|
|
|
|
create(L1.get(), sharedCodeGenContext.get());
|
|
create(L2.get(), sharedCodeGenContext.get());
|
|
|
|
std::string source = R"(
|
|
function add(x, y) return x + y end
|
|
function sub(x, y) return x - y end
|
|
)";
|
|
|
|
size_t bytecodeSize = 0;
|
|
std::unique_ptr<char[], void (*)(void*)> bytecode{luau_compile(source.data(), source.size(), nullptr, &bytecodeSize), free};
|
|
const int loadResult1 = luau_load(L1.get(), "=Functions", bytecode.get(), bytecodeSize, 0);
|
|
const int loadResult2 = luau_load(L2.get(), "=Functions", bytecode.get(), bytecodeSize, 0);
|
|
REQUIRE(loadResult1 == 0);
|
|
REQUIRE(loadResult2 == 0);
|
|
bytecode.reset();
|
|
|
|
const ModuleId moduleId = {0x01};
|
|
|
|
CompilationOptions options;
|
|
options.flags = CodeGen_ColdFunctions;
|
|
|
|
CompilationStats nativeStats1 = {};
|
|
CompilationStats nativeStats2 = {};
|
|
const CompilationResult codeGenResult1 = Luau::CodeGen::compile(moduleId, L1.get(), -1, options, &nativeStats1);
|
|
const CompilationResult codeGenResult2 = Luau::CodeGen::compile(moduleId, L2.get(), -1, options, &nativeStats2);
|
|
REQUIRE(codeGenResult1.result == CodeGenCompilationResult::Success);
|
|
REQUIRE(codeGenResult2.result == CodeGenCompilationResult::Success);
|
|
|
|
// We should have identified all three functions both times through:
|
|
REQUIRE(nativeStats1.functionsTotal == 3);
|
|
REQUIRE(nativeStats2.functionsTotal == 3);
|
|
|
|
// We should have compiled the three functions only the first time:
|
|
REQUIRE(nativeStats1.functionsCompiled == 3);
|
|
REQUIRE(nativeStats2.functionsCompiled == 0);
|
|
|
|
// We should have bound all three functions both times through:
|
|
REQUIRE(nativeStats1.functionsBound == 3);
|
|
REQUIRE(nativeStats2.functionsBound == 3);
|
|
}
|