luau/Analysis/src/ConstraintGenerator.cpp
Vighnesh-V a7299c3f0f
Sync to upstream/release/635 (#1337)
# What's Changed?

- Bugfixes in the new solver

## New Solver
- Equality graphs(E-Graphs) data structures were added
- Refactored even more instances of "type family" with "type function"
- `table.insert` no longer spuriously warns while selecting an overload
for reasonable arguments.
- Add time tracing for the new solver
- Miscellaneous fixes to unit tests

---
### Internal Contributors

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Jeremy Yoo <jyoo@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Co-authored-by: Junseo Yoo <jyoo@roblox.com>
2024-07-19 11:20:47 -07:00

3381 lines
120 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/ConstraintGenerator.h"
#include "Luau/Ast.h"
#include "Luau/Def.h"
#include "Luau/Common.h"
#include "Luau/Constraint.h"
#include "Luau/ControlFlow.h"
#include "Luau/DcrLogger.h"
#include "Luau/DenseHash.h"
#include "Luau/ModuleResolver.h"
#include "Luau/RecursionCounter.h"
#include "Luau/Refinement.h"
#include "Luau/Scope.h"
#include "Luau/Simplify.h"
#include "Luau/StringUtils.h"
#include "Luau/TableLiteralInference.h"
#include "Luau/TimeTrace.h"
#include "Luau/Type.h"
#include "Luau/TypeFunction.h"
#include "Luau/TypePack.h"
#include "Luau/TypeUtils.h"
#include "Luau/Unifier2.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <memory>
LUAU_FASTINT(LuauCheckRecursionLimit);
LUAU_FASTFLAG(DebugLuauLogSolverToJson);
LUAU_FASTFLAG(DebugLuauMagicTypes);
LUAU_FASTFLAG(LuauAttributeSyntax);
LUAU_FASTFLAG(LuauDeclarationExtraPropData);
namespace Luau
{
bool doesCallError(const AstExprCall* call); // TypeInfer.cpp
const AstStat* getFallthrough(const AstStat* node); // TypeInfer.cpp
static std::optional<AstExpr*> matchRequire(const AstExprCall& call)
{
const char* require = "require";
if (call.args.size != 1)
return std::nullopt;
const AstExprGlobal* funcAsGlobal = call.func->as<AstExprGlobal>();
if (!funcAsGlobal || funcAsGlobal->name != require)
return std::nullopt;
if (call.args.size != 1)
return std::nullopt;
return call.args.data[0];
}
static bool matchSetmetatable(const AstExprCall& call)
{
const char* smt = "setmetatable";
if (call.args.size != 2)
return false;
const AstExprGlobal* funcAsGlobal = call.func->as<AstExprGlobal>();
if (!funcAsGlobal || funcAsGlobal->name != smt)
return false;
return true;
}
struct TypeGuard
{
bool isTypeof;
AstExpr* target;
std::string type;
};
static std::optional<TypeGuard> matchTypeGuard(const AstExprBinary* binary)
{
if (binary->op != AstExprBinary::CompareEq && binary->op != AstExprBinary::CompareNe)
return std::nullopt;
AstExpr* left = binary->left;
AstExpr* right = binary->right;
if (right->is<AstExprCall>())
std::swap(left, right);
if (!right->is<AstExprConstantString>())
return std::nullopt;
AstExprCall* call = left->as<AstExprCall>();
AstExprConstantString* string = right->as<AstExprConstantString>();
if (!call || !string)
return std::nullopt;
AstExprGlobal* callee = call->func->as<AstExprGlobal>();
if (!callee)
return std::nullopt;
if (callee->name != "type" && callee->name != "typeof")
return std::nullopt;
if (call->args.size != 1)
return std::nullopt;
return TypeGuard{
/*isTypeof*/ callee->name == "typeof",
/*target*/ call->args.data[0],
/*type*/ std::string(string->value.data, string->value.size),
};
}
static bool matchAssert(const AstExprCall& call)
{
if (call.args.size < 1)
return false;
const AstExprGlobal* funcAsGlobal = call.func->as<AstExprGlobal>();
if (!funcAsGlobal || funcAsGlobal->name != "assert")
return false;
return true;
}
namespace
{
struct Checkpoint
{
size_t offset;
};
Checkpoint checkpoint(const ConstraintGenerator* cg)
{
return Checkpoint{cg->constraints.size()};
}
template<typename F>
void forEachConstraint(const Checkpoint& start, const Checkpoint& end, const ConstraintGenerator* cg, F f)
{
for (size_t i = start.offset; i < end.offset; ++i)
f(cg->constraints[i]);
}
struct HasFreeType : TypeOnceVisitor
{
bool result = false;
HasFreeType() {}
bool visit(TypeId ty) override
{
if (result || ty->persistent)
return false;
return true;
}
bool visit(TypePackId tp) override
{
if (result)
return false;
return true;
}
bool visit(TypeId ty, const ClassType&) override
{
return false;
}
bool visit(TypeId ty, const FreeType&) override
{
result = true;
return false;
}
bool visit(TypePackId ty, const FreeTypePack&) override
{
result = true;
return false;
}
};
bool hasFreeType(TypeId ty)
{
HasFreeType hft{};
hft.traverse(ty);
return hft.result;
}
} // namespace
ConstraintGenerator::ConstraintGenerator(ModulePtr module, NotNull<Normalizer> normalizer, NotNull<ModuleResolver> moduleResolver,
NotNull<BuiltinTypes> builtinTypes, NotNull<InternalErrorReporter> ice, const ScopePtr& globalScope,
std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, DcrLogger* logger, NotNull<DataFlowGraph> dfg,
std::vector<RequireCycle> requireCycles)
: module(module)
, builtinTypes(builtinTypes)
, arena(normalizer->arena)
, rootScope(nullptr)
, dfg(dfg)
, normalizer(normalizer)
, moduleResolver(moduleResolver)
, ice(ice)
, globalScope(globalScope)
, prepareModuleScope(std::move(prepareModuleScope))
, requireCycles(std::move(requireCycles))
, logger(logger)
{
LUAU_ASSERT(module);
}
void ConstraintGenerator::visitModuleRoot(AstStatBlock* block)
{
LUAU_TIMETRACE_SCOPE("ConstraintGenerator::visitModuleRoot", "Typechecking");
LUAU_ASSERT(scopes.empty());
LUAU_ASSERT(rootScope == nullptr);
ScopePtr scope = std::make_shared<Scope>(globalScope);
rootScope = scope.get();
scopes.emplace_back(block->location, scope);
rootScope->location = block->location;
module->astScopes[block] = NotNull{scope.get()};
rootScope->returnType = freshTypePack(scope);
TypeId moduleFnTy = arena->addType(FunctionType{TypeLevel{}, rootScope, builtinTypes->anyTypePack, rootScope->returnType});
interiorTypes.emplace_back();
prepopulateGlobalScope(scope, block);
Checkpoint start = checkpoint(this);
ControlFlow cf = visitBlockWithoutChildScope(scope, block);
if (cf == ControlFlow::None)
addConstraint(scope, block->location, PackSubtypeConstraint{builtinTypes->emptyTypePack, rootScope->returnType});
Checkpoint end = checkpoint(this);
TypeId result = arena->addType(BlockedType{});
NotNull<Constraint> genConstraint =
addConstraint(scope, block->location, GeneralizationConstraint{result, moduleFnTy, std::move(interiorTypes.back())});
getMutable<BlockedType>(result)->setOwner(genConstraint);
forEachConstraint(start, end, this, [genConstraint](const ConstraintPtr& c) {
genConstraint->dependencies.push_back(NotNull{c.get()});
});
interiorTypes.pop_back();
fillInInferredBindings(scope, block);
if (logger)
logger->captureGenerationModule(module);
for (const auto& [ty, domain] : localTypes)
{
// FIXME: This isn't the most efficient thing.
TypeId domainTy = builtinTypes->neverType;
for (TypeId d : domain)
{
if (d == ty)
continue;
domainTy = simplifyUnion(builtinTypes, arena, domainTy, d).result;
}
LUAU_ASSERT(get<BlockedType>(ty));
asMutable(ty)->ty.emplace<BoundType>(domainTy);
}
}
TypeId ConstraintGenerator::freshType(const ScopePtr& scope)
{
return Luau::freshType(arena, builtinTypes, scope.get());
}
TypePackId ConstraintGenerator::freshTypePack(const ScopePtr& scope)
{
FreeTypePack f{scope.get()};
return arena->addTypePack(TypePackVar{std::move(f)});
}
TypePackId ConstraintGenerator::addTypePack(std::vector<TypeId> head, std::optional<TypePackId> tail)
{
if (head.empty())
{
if (tail)
return *tail;
else
return builtinTypes->emptyTypePack;
}
else
return arena->addTypePack(TypePack{std::move(head), tail});
}
ScopePtr ConstraintGenerator::childScope(AstNode* node, const ScopePtr& parent)
{
auto scope = std::make_shared<Scope>(parent);
scopes.emplace_back(node->location, scope);
scope->location = node->location;
scope->returnType = parent->returnType;
scope->varargPack = parent->varargPack;
parent->children.push_back(NotNull{scope.get()});
module->astScopes[node] = scope.get();
return scope;
}
std::optional<TypeId> ConstraintGenerator::lookup(const ScopePtr& scope, Location location, DefId def, bool prototype)
{
if (get<Cell>(def))
return scope->lookup(def);
if (auto phi = get<Phi>(def))
{
if (auto found = scope->lookup(def))
return *found;
else if (!prototype && phi->operands.size() == 1)
return lookup(scope, location, phi->operands.at(0), prototype);
else if (!prototype)
return std::nullopt;
TypeId res = builtinTypes->neverType;
for (DefId operand : phi->operands)
{
// `scope->lookup(operand)` may return nothing because we only bind a type to that operand
// once we've seen that particular `DefId`. In this case, we need to prototype those types
// and use those at a later time.
std::optional<TypeId> ty = lookup(scope, location, operand, /*prototype*/ false);
if (!ty)
{
ty = arena->addType(BlockedType{});
localTypes.try_insert(*ty, {});
rootScope->lvalueTypes[operand] = *ty;
}
res = makeUnion(scope, location, res, *ty);
}
scope->lvalueTypes[def] = res;
return res;
}
else
ice->ice("ConstraintGenerator::lookup is inexhaustive?");
}
NotNull<Constraint> ConstraintGenerator::addConstraint(const ScopePtr& scope, const Location& location, ConstraintV cv)
{
return NotNull{constraints.emplace_back(new Constraint{NotNull{scope.get()}, location, std::move(cv)}).get()};
}
NotNull<Constraint> ConstraintGenerator::addConstraint(const ScopePtr& scope, std::unique_ptr<Constraint> c)
{
return NotNull{constraints.emplace_back(std::move(c)).get()};
}
void ConstraintGenerator::unionRefinements(const ScopePtr& scope, Location location, const RefinementContext& lhs, const RefinementContext& rhs,
RefinementContext& dest, std::vector<ConstraintV>* constraints)
{
const auto intersect = [&](const std::vector<TypeId>& types) {
if (1 == types.size())
return types[0];
else if (2 == types.size())
return makeIntersect(scope, location, types[0], types[1]);
return arena->addType(IntersectionType{types});
};
for (auto& [def, partition] : lhs)
{
auto rhsIt = rhs.find(def);
if (rhsIt == rhs.end())
continue;
LUAU_ASSERT(!partition.discriminantTypes.empty());
LUAU_ASSERT(!rhsIt->second.discriminantTypes.empty());
TypeId leftDiscriminantTy = partition.discriminantTypes.size() == 1 ? partition.discriminantTypes[0] : intersect(partition.discriminantTypes);
TypeId rightDiscriminantTy =
rhsIt->second.discriminantTypes.size() == 1 ? rhsIt->second.discriminantTypes[0] : intersect(rhsIt->second.discriminantTypes);
dest.insert(def, {});
dest.get(def)->discriminantTypes.push_back(makeUnion(scope, location, leftDiscriminantTy, rightDiscriminantTy));
dest.get(def)->shouldAppendNilType |= partition.shouldAppendNilType || rhsIt->second.shouldAppendNilType;
}
}
void ConstraintGenerator::computeRefinement(const ScopePtr& scope, Location location, RefinementId refinement, RefinementContext* refis, bool sense,
bool eq, std::vector<ConstraintV>* constraints)
{
if (!refinement)
return;
else if (auto variadic = get<Variadic>(refinement))
{
for (RefinementId refi : variadic->refinements)
computeRefinement(scope, location, refi, refis, sense, eq, constraints);
}
else if (auto negation = get<Negation>(refinement))
return computeRefinement(scope, location, negation->refinement, refis, !sense, eq, constraints);
else if (auto conjunction = get<Conjunction>(refinement))
{
RefinementContext lhsRefis;
RefinementContext rhsRefis;
computeRefinement(scope, location, conjunction->lhs, sense ? refis : &lhsRefis, sense, eq, constraints);
computeRefinement(scope, location, conjunction->rhs, sense ? refis : &rhsRefis, sense, eq, constraints);
if (!sense)
unionRefinements(scope, location, lhsRefis, rhsRefis, *refis, constraints);
}
else if (auto disjunction = get<Disjunction>(refinement))
{
RefinementContext lhsRefis;
RefinementContext rhsRefis;
computeRefinement(scope, location, disjunction->lhs, sense ? &lhsRefis : refis, sense, eq, constraints);
computeRefinement(scope, location, disjunction->rhs, sense ? &rhsRefis : refis, sense, eq, constraints);
if (sense)
unionRefinements(scope, location, lhsRefis, rhsRefis, *refis, constraints);
}
else if (auto equivalence = get<Equivalence>(refinement))
{
computeRefinement(scope, location, equivalence->lhs, refis, sense, true, constraints);
computeRefinement(scope, location, equivalence->rhs, refis, sense, true, constraints);
}
else if (auto proposition = get<Proposition>(refinement))
{
TypeId discriminantTy = proposition->discriminantTy;
// if we have a negative sense, then we need to negate the discriminant
if (!sense)
discriminantTy = arena->addType(NegationType{discriminantTy});
if (eq)
discriminantTy = createTypeFunctionInstance(builtinTypeFunctions().singletonFunc, {discriminantTy}, {}, scope, location);
for (const RefinementKey* key = proposition->key; key; key = key->parent)
{
refis->insert(key->def, {});
refis->get(key->def)->discriminantTypes.push_back(discriminantTy);
// Reached leaf node
if (!key->propName)
break;
TypeId nextDiscriminantTy = arena->addType(TableType{});
NotNull<TableType> table{getMutable<TableType>(nextDiscriminantTy)};
// When we fully support read-write properties (i.e. when we allow properties with
// completely disparate read and write types), then the following property can be
// set to read-only since refinements only tell us about what we read. This cannot
// be allowed yet though because it causes read and write types to diverge.
table->props[*key->propName] = Property::rw(discriminantTy);
table->scope = scope.get();
table->state = TableState::Sealed;
discriminantTy = nextDiscriminantTy;
}
// When the top-level expression is `t[x]`, we want to refine it into `nil`, not `never`.
LUAU_ASSERT(refis->get(proposition->key->def));
refis->get(proposition->key->def)->shouldAppendNilType = (sense || !eq) && containsSubscriptedDefinition(proposition->key->def);
}
}
namespace
{
/*
* Constraint generation may be called upon to simplify an intersection or union
* of types that are not sufficiently solved yet. We use
* FindSimplificationBlockers to recognize these types and defer the
* simplification until constraint solution.
*/
struct FindSimplificationBlockers : TypeOnceVisitor
{
bool found = false;
bool visit(TypeId) override
{
return !found;
}
bool visit(TypeId, const BlockedType&) override
{
found = true;
return false;
}
bool visit(TypeId, const FreeType&) override
{
found = true;
return false;
}
bool visit(TypeId, const PendingExpansionType&) override
{
found = true;
return false;
}
// We do not need to know anything at all about a function's argument or
// return types in order to simplify it in an intersection or union.
bool visit(TypeId, const FunctionType&) override
{
return false;
}
bool visit(TypeId, const ClassType&) override
{
return false;
}
};
bool mustDeferIntersection(TypeId ty)
{
FindSimplificationBlockers bts;
bts.traverse(ty);
return bts.found;
}
} // namespace
void ConstraintGenerator::applyRefinements(const ScopePtr& scope, Location location, RefinementId refinement)
{
if (!refinement)
return;
RefinementContext refinements;
std::vector<ConstraintV> constraints;
computeRefinement(scope, location, refinement, &refinements, /*sense*/ true, /*eq*/ false, &constraints);
for (auto& [def, partition] : refinements)
{
if (std::optional<TypeId> defTy = lookup(scope, location, def))
{
TypeId ty = *defTy;
if (partition.shouldAppendNilType)
ty = arena->addType(UnionType{{ty, builtinTypes->nilType}});
// Intersect ty with every discriminant type. If either type is not
// sufficiently solved, we queue the intersection up via an
// IntersectConstraint.
for (TypeId dt : partition.discriminantTypes)
{
if (mustDeferIntersection(ty) || mustDeferIntersection(dt))
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().refineFunc, {ty, dt}, {}, scope, location);
ty = resultType;
}
else
{
switch (shouldSuppressErrors(normalizer, ty))
{
case ErrorSuppression::DoNotSuppress:
ty = makeIntersect(scope, location, ty, dt);
break;
case ErrorSuppression::Suppress:
ty = makeIntersect(scope, location, ty, dt);
ty = makeUnion(scope, location, ty, builtinTypes->errorType);
break;
case ErrorSuppression::NormalizationFailed:
reportError(location, NormalizationTooComplex{});
ty = makeIntersect(scope, location, ty, dt);
break;
}
}
}
scope->rvalueRefinements[def] = ty;
}
}
for (auto& c : constraints)
addConstraint(scope, location, c);
}
ControlFlow ConstraintGenerator::visitBlockWithoutChildScope(const ScopePtr& scope, AstStatBlock* block)
{
RecursionCounter counter{&recursionCount};
if (recursionCount >= FInt::LuauCheckRecursionLimit)
{
reportCodeTooComplex(block->location);
return ControlFlow::None;
}
std::unordered_map<Name, Location> aliasDefinitionLocations;
// In order to enable mutually-recursive type aliases, we need to
// populate the type bindings before we actually check any of the
// alias statements.
for (AstStat* stat : block->body)
{
if (auto alias = stat->as<AstStatTypeAlias>())
{
if (scope->exportedTypeBindings.count(alias->name.value) || scope->privateTypeBindings.count(alias->name.value))
{
auto it = aliasDefinitionLocations.find(alias->name.value);
LUAU_ASSERT(it != aliasDefinitionLocations.end());
reportError(alias->location, DuplicateTypeDefinition{alias->name.value, it->second});
continue;
}
// A type alias might have no name if the code is syntactically
// illegal. We mustn't prepopulate anything in this case.
if (alias->name == kParseNameError || alias->name == "typeof")
continue;
ScopePtr defnScope = childScope(alias, scope);
TypeId initialType = arena->addType(BlockedType{});
TypeFun initialFun{initialType};
for (const auto& [name, gen] : createGenerics(defnScope, alias->generics, /* useCache */ true))
{
initialFun.typeParams.push_back(gen);
}
for (const auto& [name, genPack] : createGenericPacks(defnScope, alias->genericPacks, /* useCache */ true))
{
initialFun.typePackParams.push_back(genPack);
}
if (alias->exported)
scope->exportedTypeBindings[alias->name.value] = std::move(initialFun);
else
scope->privateTypeBindings[alias->name.value] = std::move(initialFun);
astTypeAliasDefiningScopes[alias] = defnScope;
aliasDefinitionLocations[alias->name.value] = alias->location;
}
}
std::optional<ControlFlow> firstControlFlow;
for (AstStat* stat : block->body)
{
ControlFlow cf = visit(scope, stat);
if (cf != ControlFlow::None && !firstControlFlow)
firstControlFlow = cf;
}
return firstControlFlow.value_or(ControlFlow::None);
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStat* stat)
{
RecursionLimiter limiter{&recursionCount, FInt::LuauCheckRecursionLimit};
if (auto s = stat->as<AstStatBlock>())
return visit(scope, s);
else if (auto i = stat->as<AstStatIf>())
return visit(scope, i);
else if (auto s = stat->as<AstStatWhile>())
return visit(scope, s);
else if (auto s = stat->as<AstStatRepeat>())
return visit(scope, s);
else if (stat->is<AstStatBreak>())
return ControlFlow::Breaks;
else if (stat->is<AstStatContinue>())
return ControlFlow::Continues;
else if (auto r = stat->as<AstStatReturn>())
return visit(scope, r);
else if (auto e = stat->as<AstStatExpr>())
{
checkPack(scope, e->expr);
if (auto call = e->expr->as<AstExprCall>(); call && doesCallError(call))
return ControlFlow::Throws;
return ControlFlow::None;
}
else if (auto s = stat->as<AstStatLocal>())
return visit(scope, s);
else if (auto s = stat->as<AstStatFor>())
return visit(scope, s);
else if (auto s = stat->as<AstStatForIn>())
return visit(scope, s);
else if (auto a = stat->as<AstStatAssign>())
return visit(scope, a);
else if (auto a = stat->as<AstStatCompoundAssign>())
return visit(scope, a);
else if (auto f = stat->as<AstStatFunction>())
return visit(scope, f);
else if (auto f = stat->as<AstStatLocalFunction>())
return visit(scope, f);
else if (auto a = stat->as<AstStatTypeAlias>())
return visit(scope, a);
else if (auto s = stat->as<AstStatDeclareGlobal>())
return visit(scope, s);
else if (auto s = stat->as<AstStatDeclareFunction>())
return visit(scope, s);
else if (auto s = stat->as<AstStatDeclareClass>())
return visit(scope, s);
else if (auto s = stat->as<AstStatError>())
return visit(scope, s);
else
{
LUAU_ASSERT(0 && "Internal error: Unknown AstStat type");
return ControlFlow::None;
}
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatLocal* statLocal)
{
std::vector<TypeId> annotatedTypes;
annotatedTypes.reserve(statLocal->vars.size);
bool hasAnnotation = false;
std::vector<std::optional<TypeId>> expectedTypes;
expectedTypes.reserve(statLocal->vars.size);
std::vector<TypeId> assignees;
assignees.reserve(statLocal->vars.size);
// Used to name the first value type, even if it's not placed in varTypes,
// for the purpose of synthetic name attribution.
std::optional<TypeId> firstValueType;
for (AstLocal* local : statLocal->vars)
{
const Location location = local->location;
TypeId assignee = arena->addType(BlockedType{});
localTypes.try_insert(assignee, {});
assignees.push_back(assignee);
if (!firstValueType)
firstValueType = assignee;
if (local->annotation)
{
hasAnnotation = true;
TypeId annotationTy = resolveType(scope, local->annotation, /* inTypeArguments */ false);
annotatedTypes.push_back(annotationTy);
expectedTypes.push_back(annotationTy);
scope->bindings[local] = Binding{annotationTy, location};
}
else
{
// annotatedTypes must contain one type per local. If a particular
// local has no annotation at, assume the most conservative thing.
annotatedTypes.push_back(builtinTypes->unknownType);
expectedTypes.push_back(std::nullopt);
scope->bindings[local] = Binding{builtinTypes->unknownType, location};
inferredBindings[local] = {scope.get(), location, {assignee}};
}
DefId def = dfg->getDef(local);
scope->lvalueTypes[def] = assignee;
}
TypePackId rvaluePack = checkPack(scope, statLocal->values, expectedTypes).tp;
if (hasAnnotation)
{
for (size_t i = 0; i < statLocal->vars.size; ++i)
{
LUAU_ASSERT(get<BlockedType>(assignees[i]));
TypeIds* localDomain = localTypes.find(assignees[i]);
LUAU_ASSERT(localDomain);
localDomain->insert(annotatedTypes[i]);
}
TypePackId annotatedPack = arena->addTypePack(std::move(annotatedTypes));
addConstraint(scope, statLocal->location, PackSubtypeConstraint{rvaluePack, annotatedPack});
}
else
{
std::vector<TypeId> valueTypes;
valueTypes.reserve(statLocal->vars.size);
auto [head, tail] = flatten(rvaluePack);
if (head.size() >= statLocal->vars.size)
{
for (size_t i = 0; i < statLocal->vars.size; ++i)
valueTypes.push_back(head[i]);
}
else
{
for (size_t i = 0; i < statLocal->vars.size; ++i)
valueTypes.push_back(arena->addType(BlockedType{}));
auto uc = addConstraint(scope, statLocal->location, UnpackConstraint{valueTypes, rvaluePack});
for (TypeId t : valueTypes)
getMutable<BlockedType>(t)->setOwner(uc);
}
for (size_t i = 0; i < statLocal->vars.size; ++i)
{
LUAU_ASSERT(get<BlockedType>(assignees[i]));
TypeIds* localDomain = localTypes.find(assignees[i]);
LUAU_ASSERT(localDomain);
localDomain->insert(valueTypes[i]);
}
}
if (statLocal->vars.size == 1 && statLocal->values.size == 1 && firstValueType && scope.get() == rootScope && !hasAnnotation)
{
AstLocal* var = statLocal->vars.data[0];
AstExpr* value = statLocal->values.data[0];
if (value->is<AstExprTable>())
addConstraint(scope, value->location, NameConstraint{*firstValueType, var->name.value, /*synthetic*/ true});
else if (const AstExprCall* call = value->as<AstExprCall>())
{
if (const AstExprGlobal* global = call->func->as<AstExprGlobal>(); global && global->name == "setmetatable")
{
addConstraint(scope, value->location, NameConstraint{*firstValueType, var->name.value, /*synthetic*/ true});
}
}
}
if (statLocal->values.size > 0)
{
// To correctly handle 'require', we need to import the exported type bindings into the variable 'namespace'.
for (size_t i = 0; i < statLocal->values.size && i < statLocal->vars.size; ++i)
{
const AstExprCall* call = statLocal->values.data[i]->as<AstExprCall>();
if (!call)
continue;
auto maybeRequire = matchRequire(*call);
if (!maybeRequire)
continue;
AstExpr* require = *maybeRequire;
auto moduleInfo = moduleResolver->resolveModuleInfo(module->name, *require);
if (!moduleInfo)
continue;
ModulePtr module = moduleResolver->getModule(moduleInfo->name);
if (!module)
continue;
const Name name{statLocal->vars.data[i]->name.value};
scope->importedTypeBindings[name] = module->exportedTypeBindings;
scope->importedModules[name] = moduleInfo->name;
// Imported types of requires that transitively refer to current module have to be replaced with 'any'
for (const auto& [location, path] : requireCycles)
{
if (path.empty() || path.front() != moduleInfo->name)
continue;
for (auto& [name, tf] : scope->importedTypeBindings[name])
tf = TypeFun{{}, {}, builtinTypes->anyType};
}
}
}
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatFor* for_)
{
TypeId annotationTy = builtinTypes->numberType;
if (for_->var->annotation)
annotationTy = resolveType(scope, for_->var->annotation, /* inTypeArguments */ false);
auto inferNumber = [&](AstExpr* expr) {
if (!expr)
return;
TypeId t = check(scope, expr).ty;
addConstraint(scope, expr->location, SubtypeConstraint{t, builtinTypes->numberType});
};
inferNumber(for_->from);
inferNumber(for_->to);
inferNumber(for_->step);
ScopePtr forScope = childScope(for_, scope);
forScope->bindings[for_->var] = Binding{annotationTy, for_->var->location};
DefId def = dfg->getDef(for_->var);
forScope->lvalueTypes[def] = annotationTy;
forScope->rvalueRefinements[def] = annotationTy;
visit(forScope, for_->body);
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatForIn* forIn)
{
ScopePtr loopScope = childScope(forIn, scope);
TypePackId iterator = checkPack(scope, forIn->values).tp;
std::vector<TypeId> variableTypes;
variableTypes.reserve(forIn->vars.size);
for (AstLocal* var : forIn->vars)
{
TypeId assignee = arena->addType(BlockedType{});
variableTypes.push_back(assignee);
TypeId loopVar = arena->addType(BlockedType{});
localTypes[loopVar].insert(assignee);
if (var->annotation)
{
TypeId annotationTy = resolveType(loopScope, var->annotation, /*inTypeArguments*/ false);
loopScope->bindings[var] = Binding{annotationTy, var->location};
addConstraint(scope, var->location, SubtypeConstraint{loopVar, annotationTy});
}
else
loopScope->bindings[var] = Binding{loopVar, var->location};
DefId def = dfg->getDef(var);
loopScope->lvalueTypes[def] = loopVar;
}
auto iterable = addConstraint(
loopScope, getLocation(forIn->values), IterableConstraint{iterator, variableTypes, forIn->values.data[0], &module->astForInNextTypes});
for (TypeId var : variableTypes)
{
auto bt = getMutable<BlockedType>(var);
LUAU_ASSERT(bt);
bt->setOwner(iterable);
}
Checkpoint start = checkpoint(this);
visit(loopScope, forIn->body);
Checkpoint end = checkpoint(this);
// This iter constraint must dispatch first.
forEachConstraint(start, end, this, [&iterable](const ConstraintPtr& runLater) {
runLater->dependencies.push_back(iterable);
});
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatWhile* while_)
{
RefinementId refinement = check(scope, while_->condition).refinement;
ScopePtr whileScope = childScope(while_, scope);
applyRefinements(whileScope, while_->condition->location, refinement);
visit(whileScope, while_->body);
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatRepeat* repeat)
{
ScopePtr repeatScope = childScope(repeat, scope);
visitBlockWithoutChildScope(repeatScope, repeat->body);
check(repeatScope, repeat->condition);
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatLocalFunction* function)
{
// Local
// Global
// Dotted path
// Self?
TypeId functionType = nullptr;
auto ty = scope->lookup(function->name);
LUAU_ASSERT(!ty.has_value()); // The parser ensures that every local function has a distinct Symbol for its name.
functionType = arena->addType(BlockedType{});
scope->bindings[function->name] = Binding{functionType, function->name->location};
FunctionSignature sig = checkFunctionSignature(scope, function->func, /* expectedType */ std::nullopt, function->name->location);
sig.bodyScope->bindings[function->name] = Binding{sig.signature, function->func->location};
bool sigFullyDefined = !hasFreeType(sig.signature);
if (sigFullyDefined)
emplaceType<BoundType>(asMutable(functionType), sig.signature);
DefId def = dfg->getDef(function->name);
scope->lvalueTypes[def] = functionType;
scope->rvalueRefinements[def] = functionType;
sig.bodyScope->lvalueTypes[def] = sig.signature;
sig.bodyScope->rvalueRefinements[def] = sig.signature;
Checkpoint start = checkpoint(this);
checkFunctionBody(sig.bodyScope, function->func);
Checkpoint end = checkpoint(this);
if (!sigFullyDefined)
{
NotNull<Scope> constraintScope{sig.signatureScope ? sig.signatureScope.get() : sig.bodyScope.get()};
std::unique_ptr<Constraint> c =
std::make_unique<Constraint>(constraintScope, function->name->location, GeneralizationConstraint{functionType, sig.signature});
Constraint* previous = nullptr;
forEachConstraint(start, end, this, [&c, &previous](const ConstraintPtr& constraint) {
c->dependencies.push_back(NotNull{constraint.get()});
if (auto psc = get<PackSubtypeConstraint>(*constraint); psc && psc->returns)
{
if (previous)
constraint->dependencies.push_back(NotNull{previous});
previous = constraint.get();
}
});
getMutable<BlockedType>(functionType)->setOwner(addConstraint(scope, std::move(c)));
module->astTypes[function->func] = functionType;
}
else
module->astTypes[function->func] = sig.signature;
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatFunction* function)
{
// Name could be AstStatLocal, AstStatGlobal, AstStatIndexName.
// With or without self
Checkpoint start = checkpoint(this);
FunctionSignature sig = checkFunctionSignature(scope, function->func, /* expectedType */ std::nullopt, function->name->location);
bool sigFullyDefined = !hasFreeType(sig.signature);
checkFunctionBody(sig.bodyScope, function->func);
Checkpoint end = checkpoint(this);
TypeId generalizedType = arena->addType(BlockedType{});
if (sigFullyDefined)
emplaceType<BoundType>(asMutable(generalizedType), sig.signature);
else
{
const ScopePtr& constraintScope = sig.signatureScope ? sig.signatureScope : sig.bodyScope;
NotNull<Constraint> c = addConstraint(constraintScope, function->name->location, GeneralizationConstraint{generalizedType, sig.signature});
getMutable<BlockedType>(generalizedType)->setOwner(c);
Constraint* previous = nullptr;
forEachConstraint(start, end, this, [&c, &previous](const ConstraintPtr& constraint) {
c->dependencies.push_back(NotNull{constraint.get()});
if (auto psc = get<PackSubtypeConstraint>(*constraint); psc && psc->returns)
{
if (previous)
constraint->dependencies.push_back(NotNull{previous});
previous = constraint.get();
}
});
}
DefId def = dfg->getDef(function->name);
std::optional<TypeId> existingFunctionTy = follow(lookup(scope, function->name->location, def));
if (AstExprLocal* localName = function->name->as<AstExprLocal>())
{
visitLValue(scope, localName, generalizedType);
scope->bindings[localName->local] = Binding{sig.signature, localName->location};
scope->lvalueTypes[def] = sig.signature;
}
else if (AstExprGlobal* globalName = function->name->as<AstExprGlobal>())
{
if (!existingFunctionTy)
ice->ice("prepopulateGlobalScope did not populate a global name", globalName->location);
// Sketchy: We're specifically looking for BlockedTypes that were
// initially created by ConstraintGenerator::prepopulateGlobalScope.
if (auto bt = get<BlockedType>(*existingFunctionTy); bt && nullptr == bt->getOwner())
emplaceType<BoundType>(asMutable(*existingFunctionTy), generalizedType);
scope->bindings[globalName->name] = Binding{sig.signature, globalName->location};
scope->lvalueTypes[def] = sig.signature;
}
else if (AstExprIndexName* indexName = function->name->as<AstExprIndexName>())
{
visitLValue(scope, indexName, generalizedType);
}
else if (AstExprError* err = function->name->as<AstExprError>())
{
generalizedType = builtinTypes->errorRecoveryType();
}
if (generalizedType == nullptr)
ice->ice("generalizedType == nullptr", function->location);
scope->rvalueRefinements[def] = generalizedType;
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatReturn* ret)
{
// At this point, the only way scope->returnType should have anything
// interesting in it is if the function has an explicit return annotation.
// If this is the case, then we can expect that the return expression
// conforms to that.
std::vector<std::optional<TypeId>> expectedTypes;
for (TypeId ty : scope->returnType)
expectedTypes.push_back(ty);
TypePackId exprTypes = checkPack(scope, ret->list, expectedTypes).tp;
addConstraint(scope, ret->location, PackSubtypeConstraint{exprTypes, scope->returnType, /*returns*/ true});
return ControlFlow::Returns;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatBlock* block)
{
ScopePtr innerScope = childScope(block, scope);
ControlFlow flow = visitBlockWithoutChildScope(innerScope, block);
// An AstStatBlock has linear control flow, i.e. one entry and one exit, so we can inherit
// all the changes to the environment occurred by the statements in that block.
scope->inheritRefinements(innerScope);
scope->inheritAssignments(innerScope);
return flow;
}
// TODO Clip?
static void bindFreeType(TypeId a, TypeId b)
{
FreeType* af = getMutable<FreeType>(a);
FreeType* bf = getMutable<FreeType>(b);
LUAU_ASSERT(af || bf);
if (!bf)
emplaceType<BoundType>(asMutable(a), b);
else if (!af)
emplaceType<BoundType>(asMutable(b), a);
else if (subsumes(bf->scope, af->scope))
emplaceType<BoundType>(asMutable(a), b);
else if (subsumes(af->scope, bf->scope))
emplaceType<BoundType>(asMutable(b), a);
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatAssign* assign)
{
TypePackId resultPack = checkPack(scope, assign->values).tp;
std::vector<TypeId> valueTypes;
valueTypes.reserve(assign->vars.size);
auto [head, tail] = flatten(resultPack);
if (head.size() >= assign->vars.size)
{
// If the resultPack is definitely long enough for each variable, we can
// skip the UnpackConstraint and use the result types directly.
for (size_t i = 0; i < assign->vars.size; ++i)
valueTypes.push_back(head[i]);
}
else
{
// We're not sure how many types are produced by the right-side
// expressions. We'll use an UnpackConstraint to defer this until
// later.
for (size_t i = 0; i < assign->vars.size; ++i)
valueTypes.push_back(arena->addType(BlockedType{}));
auto uc = addConstraint(scope, assign->location, UnpackConstraint{valueTypes, resultPack});
for (TypeId t : valueTypes)
getMutable<BlockedType>(t)->setOwner(uc);
}
for (size_t i = 0; i < assign->vars.size; ++i)
{
visitLValue(scope, assign->vars.data[i], valueTypes[i]);
}
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatCompoundAssign* assign)
{
AstExprBinary binop = AstExprBinary{assign->location, assign->op, assign->var, assign->value};
TypeId resultTy = check(scope, &binop).ty;
module->astCompoundAssignResultTypes[assign] = resultTy;
TypeId lhsType = check(scope, assign->var).ty;
visitLValue(scope, assign->var, lhsType);
follow(lhsType);
follow(resultTy);
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatIf* ifStatement)
{
RefinementId refinement = [&]() {
InConditionalContext flipper{&typeContext};
return check(scope, ifStatement->condition, std::nullopt).refinement;
}();
ScopePtr thenScope = childScope(ifStatement->thenbody, scope);
applyRefinements(thenScope, ifStatement->condition->location, refinement);
ScopePtr elseScope = childScope(ifStatement->elsebody ? ifStatement->elsebody : ifStatement, scope);
applyRefinements(elseScope, ifStatement->elseLocation.value_or(ifStatement->condition->location), refinementArena.negation(refinement));
ControlFlow thencf = visit(thenScope, ifStatement->thenbody);
ControlFlow elsecf = ControlFlow::None;
if (ifStatement->elsebody)
elsecf = visit(elseScope, ifStatement->elsebody);
if (thencf != ControlFlow::None && elsecf == ControlFlow::None)
scope->inheritRefinements(elseScope);
else if (thencf == ControlFlow::None && elsecf != ControlFlow::None)
scope->inheritRefinements(thenScope);
if (thencf == ControlFlow::None)
scope->inheritAssignments(thenScope);
if (elsecf == ControlFlow::None)
scope->inheritAssignments(elseScope);
if (thencf == elsecf)
return thencf;
else if (matches(thencf, ControlFlow::Returns | ControlFlow::Throws) && matches(elsecf, ControlFlow::Returns | ControlFlow::Throws))
return ControlFlow::Returns;
else
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatTypeAlias* alias)
{
if (alias->name == kParseNameError)
return ControlFlow::None;
if (alias->name == "typeof")
{
reportError(alias->location, GenericError{"Type aliases cannot be named typeof"});
return ControlFlow::None;
}
scope->typeAliasLocations[alias->name.value] = alias->location;
scope->typeAliasNameLocations[alias->name.value] = alias->nameLocation;
ScopePtr* defnScope = astTypeAliasDefiningScopes.find(alias);
std::unordered_map<Name, TypeFun>* typeBindings;
if (alias->exported)
typeBindings = &scope->exportedTypeBindings;
else
typeBindings = &scope->privateTypeBindings;
// These will be undefined if the alias was a duplicate definition, in which
// case we just skip over it.
auto bindingIt = typeBindings->find(alias->name.value);
if (bindingIt == typeBindings->end() || defnScope == nullptr)
return ControlFlow::None;
TypeId ty = resolveType(*defnScope, alias->type, /* inTypeArguments */ false, /* replaceErrorWithFresh */ false);
TypeId aliasTy = bindingIt->second.type;
LUAU_ASSERT(get<BlockedType>(aliasTy));
if (occursCheck(aliasTy, ty))
{
emplaceType<BoundType>(asMutable(aliasTy), builtinTypes->anyType);
reportError(alias->nameLocation, OccursCheckFailed{});
}
else
emplaceType<BoundType>(asMutable(aliasTy), ty);
std::vector<TypeId> typeParams;
for (auto tyParam : createGenerics(*defnScope, alias->generics, /* useCache */ true, /* addTypes */ false))
typeParams.push_back(tyParam.second.ty);
std::vector<TypePackId> typePackParams;
for (auto tpParam : createGenericPacks(*defnScope, alias->genericPacks, /* useCache */ true, /* addTypes */ false))
typePackParams.push_back(tpParam.second.tp);
addConstraint(scope, alias->type->location,
NameConstraint{
ty,
alias->name.value,
/*synthetic=*/false,
std::move(typeParams),
std::move(typePackParams),
});
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatDeclareGlobal* global)
{
LUAU_ASSERT(global->type);
TypeId globalTy = resolveType(scope, global->type, /* inTypeArguments */ false);
Name globalName(global->name.value);
module->declaredGlobals[globalName] = globalTy;
rootScope->bindings[global->name] = Binding{globalTy, global->location};
DefId def = dfg->getDef(global);
rootScope->lvalueTypes[def] = globalTy;
rootScope->rvalueRefinements[def] = globalTy;
return ControlFlow::None;
}
static bool isMetamethod(const Name& name)
{
return name == "__index" || name == "__newindex" || name == "__call" || name == "__concat" || name == "__unm" || name == "__add" ||
name == "__sub" || name == "__mul" || name == "__div" || name == "__mod" || name == "__pow" || name == "__tostring" ||
name == "__metatable" || name == "__eq" || name == "__lt" || name == "__le" || name == "__mode" || name == "__iter" || name == "__len" ||
name == "__idiv";
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatDeclareClass* declaredClass)
{
std::optional<TypeId> superTy = std::make_optional(builtinTypes->classType);
if (declaredClass->superName)
{
Name superName = Name(declaredClass->superName->value);
std::optional<TypeFun> lookupType = scope->lookupType(superName);
if (!lookupType)
{
reportError(declaredClass->location, UnknownSymbol{superName, UnknownSymbol::Type});
return ControlFlow::None;
}
// We don't have generic classes, so this assertion _should_ never be hit.
LUAU_ASSERT(lookupType->typeParams.size() == 0 && lookupType->typePackParams.size() == 0);
superTy = lookupType->type;
if (!get<ClassType>(follow(*superTy)))
{
reportError(declaredClass->location,
GenericError{format("Cannot use non-class type '%s' as a superclass of class '%s'", superName.c_str(), declaredClass->name.value)});
return ControlFlow::None;
}
}
Name className(declaredClass->name.value);
TypeId classTy = arena->addType(ClassType(className, {}, superTy, std::nullopt, {}, {}, module->name, declaredClass->location));
ClassType* ctv = getMutable<ClassType>(classTy);
TypeId metaTy = arena->addType(TableType{TableState::Sealed, scope->level, scope.get()});
TableType* metatable = getMutable<TableType>(metaTy);
ctv->metatable = metaTy;
scope->exportedTypeBindings[className] = TypeFun{{}, classTy};
if (declaredClass->indexer)
{
RecursionCounter counter{&recursionCount};
if (recursionCount >= FInt::LuauCheckRecursionLimit)
{
reportCodeTooComplex(declaredClass->indexer->location);
}
else
{
ctv->indexer = TableIndexer{
resolveType(scope, declaredClass->indexer->indexType, /* inTypeArguments */ false),
resolveType(scope, declaredClass->indexer->resultType, /* inTypeArguments */ false),
};
}
}
for (const AstDeclaredClassProp& prop : declaredClass->props)
{
Name propName(prop.name.value);
TypeId propTy = resolveType(scope, prop.ty, /* inTypeArguments */ false);
bool assignToMetatable = isMetamethod(propName);
// Function types always take 'self', but this isn't reflected in the
// parsed annotation. Add it here.
if (prop.isMethod)
{
if (FunctionType* ftv = getMutable<FunctionType>(propTy))
{
ftv->argNames.insert(ftv->argNames.begin(), FunctionArgument{"self", {}});
ftv->argTypes = addTypePack({classTy}, ftv->argTypes);
ftv->hasSelf = true;
if (FFlag::LuauDeclarationExtraPropData)
{
FunctionDefinition defn;
defn.definitionModuleName = module->name;
defn.definitionLocation = prop.location;
// No data is preserved for varargLocation
defn.originalNameLocation = prop.nameLocation;
ftv->definition = defn;
}
}
}
TableType::Props& props = assignToMetatable ? metatable->props : ctv->props;
if (props.count(propName) == 0)
{
if (FFlag::LuauDeclarationExtraPropData)
props[propName] = {propTy, /*deprecated*/ false, /*deprecatedSuggestion*/ "", prop.location};
else
props[propName] = {propTy};
}
else if (FFlag::LuauDeclarationExtraPropData)
{
Luau::Property& prop = props[propName];
TypeId currentTy = prop.type();
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
if (const IntersectionType* itv = get<IntersectionType>(currentTy))
{
std::vector<TypeId> options = itv->parts;
options.push_back(propTy);
TypeId newItv = arena->addType(IntersectionType{std::move(options)});
prop.readTy = newItv;
prop.writeTy = newItv;
}
else if (get<FunctionType>(currentTy))
{
TypeId intersection = arena->addType(IntersectionType{{currentTy, propTy}});
prop.readTy = intersection;
prop.writeTy = intersection;
}
else
{
reportError(declaredClass->location, GenericError{format("Cannot overload non-function class member '%s'", propName.c_str())});
}
}
else
{
TypeId currentTy = props[propName].type();
// We special-case this logic to keep the intersection flat; otherwise we
// would create a ton of nested intersection types.
if (const IntersectionType* itv = get<IntersectionType>(currentTy))
{
std::vector<TypeId> options = itv->parts;
options.push_back(propTy);
TypeId newItv = arena->addType(IntersectionType{std::move(options)});
props[propName] = {newItv};
}
else if (get<FunctionType>(currentTy))
{
TypeId intersection = arena->addType(IntersectionType{{currentTy, propTy}});
props[propName] = {intersection};
}
else
{
reportError(declaredClass->location, GenericError{format("Cannot overload non-function class member '%s'", propName.c_str())});
}
}
}
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatDeclareFunction* global)
{
std::vector<std::pair<Name, GenericTypeDefinition>> generics = createGenerics(scope, global->generics);
std::vector<std::pair<Name, GenericTypePackDefinition>> genericPacks = createGenericPacks(scope, global->genericPacks);
std::vector<TypeId> genericTys;
genericTys.reserve(generics.size());
for (auto& [name, generic] : generics)
{
genericTys.push_back(generic.ty);
}
std::vector<TypePackId> genericTps;
genericTps.reserve(genericPacks.size());
for (auto& [name, generic] : genericPacks)
{
genericTps.push_back(generic.tp);
}
ScopePtr funScope = scope;
if (!generics.empty() || !genericPacks.empty())
funScope = childScope(global, scope);
TypePackId paramPack = resolveTypePack(funScope, global->params, /* inTypeArguments */ false);
TypePackId retPack = resolveTypePack(funScope, global->retTypes, /* inTypeArguments */ false);
FunctionDefinition defn;
if (FFlag::LuauDeclarationExtraPropData)
{
defn.definitionModuleName = module->name;
defn.definitionLocation = global->location;
defn.varargLocation = global->vararg ? std::make_optional(global->varargLocation) : std::nullopt;
defn.originalNameLocation = global->nameLocation;
}
TypeId fnType = arena->addType(FunctionType{TypeLevel{}, funScope.get(), std::move(genericTys), std::move(genericTps), paramPack, retPack, defn});
FunctionType* ftv = getMutable<FunctionType>(fnType);
ftv->isCheckedFunction = FFlag::LuauAttributeSyntax ? global->isCheckedFunction() : false;
ftv->argNames.reserve(global->paramNames.size);
for (const auto& el : global->paramNames)
ftv->argNames.push_back(FunctionArgument{el.first.value, el.second});
Name fnName(global->name.value);
module->declaredGlobals[fnName] = fnType;
scope->bindings[global->name] = Binding{fnType, global->location};
DefId def = dfg->getDef(global);
rootScope->lvalueTypes[def] = fnType;
rootScope->rvalueRefinements[def] = fnType;
return ControlFlow::None;
}
ControlFlow ConstraintGenerator::visit(const ScopePtr& scope, AstStatError* error)
{
for (AstStat* stat : error->statements)
visit(scope, stat);
for (AstExpr* expr : error->expressions)
check(scope, expr);
return ControlFlow::None;
}
InferencePack ConstraintGenerator::checkPack(const ScopePtr& scope, AstArray<AstExpr*> exprs, const std::vector<std::optional<TypeId>>& expectedTypes)
{
std::vector<TypeId> head;
std::optional<TypePackId> tail;
for (size_t i = 0; i < exprs.size; ++i)
{
AstExpr* expr = exprs.data[i];
if (i < exprs.size - 1)
{
std::optional<TypeId> expectedType;
if (i < expectedTypes.size())
expectedType = expectedTypes[i];
head.push_back(check(scope, expr, expectedType).ty);
}
else
{
std::vector<std::optional<TypeId>> expectedTailTypes;
if (i < expectedTypes.size())
expectedTailTypes.assign(begin(expectedTypes) + i, end(expectedTypes));
tail = checkPack(scope, expr, expectedTailTypes).tp;
}
}
return InferencePack{addTypePack(std::move(head), tail)};
}
InferencePack ConstraintGenerator::checkPack(
const ScopePtr& scope, AstExpr* expr, const std::vector<std::optional<TypeId>>& expectedTypes, bool generalize)
{
RecursionCounter counter{&recursionCount};
if (recursionCount >= FInt::LuauCheckRecursionLimit)
{
reportCodeTooComplex(expr->location);
return InferencePack{builtinTypes->errorRecoveryTypePack()};
}
InferencePack result;
if (AstExprCall* call = expr->as<AstExprCall>())
result = checkPack(scope, call);
else if (AstExprVarargs* varargs = expr->as<AstExprVarargs>())
{
if (scope->varargPack)
result = InferencePack{*scope->varargPack};
else
result = InferencePack{builtinTypes->errorRecoveryTypePack()};
}
else
{
std::optional<TypeId> expectedType;
if (!expectedTypes.empty())
expectedType = expectedTypes[0];
TypeId t = check(scope, expr, expectedType, /*forceSingletons*/ false, generalize).ty;
result = InferencePack{arena->addTypePack({t})};
}
LUAU_ASSERT(result.tp);
module->astTypePacks[expr] = result.tp;
return result;
}
InferencePack ConstraintGenerator::checkPack(const ScopePtr& scope, AstExprCall* call)
{
std::vector<AstExpr*> exprArgs;
std::vector<RefinementId> returnRefinements;
std::vector<std::optional<TypeId>> discriminantTypes;
if (call->self)
{
AstExprIndexName* indexExpr = call->func->as<AstExprIndexName>();
if (!indexExpr)
ice->ice("method call expression has no 'self'");
exprArgs.push_back(indexExpr->expr);
if (auto key = dfg->getRefinementKey(indexExpr->expr))
{
TypeId discriminantTy = arena->addType(BlockedType{});
returnRefinements.push_back(refinementArena.proposition(key, discriminantTy));
discriminantTypes.push_back(discriminantTy);
}
else
discriminantTypes.push_back(std::nullopt);
}
for (AstExpr* arg : call->args)
{
exprArgs.push_back(arg);
if (auto key = dfg->getRefinementKey(arg))
{
TypeId discriminantTy = arena->addType(BlockedType{});
returnRefinements.push_back(refinementArena.proposition(key, discriminantTy));
discriminantTypes.push_back(discriminantTy);
}
else
discriminantTypes.push_back(std::nullopt);
}
Checkpoint funcBeginCheckpoint = checkpoint(this);
TypeId fnType = check(scope, call->func).ty;
Checkpoint funcEndCheckpoint = checkpoint(this);
std::vector<std::optional<TypeId>> expectedTypesForCall = getExpectedCallTypesForFunctionOverloads(fnType);
module->astOriginalCallTypes[call->func] = fnType;
module->astOriginalCallTypes[call] = fnType;
Checkpoint argBeginCheckpoint = checkpoint(this);
std::vector<TypeId> args;
std::optional<TypePackId> argTail;
std::vector<RefinementId> argumentRefinements;
for (size_t i = 0; i < exprArgs.size(); ++i)
{
AstExpr* arg = exprArgs[i];
if (i == 0 && call->self)
{
// The self type has already been computed as a side effect of
// computing fnType. If computing that did not cause us to exceed a
// recursion limit, we can fetch it from astTypes rather than
// recomputing it.
TypeId* selfTy = module->astTypes.find(exprArgs[0]);
if (selfTy)
args.push_back(*selfTy);
else
args.push_back(freshType(scope));
}
else if (i < exprArgs.size() - 1 || !(arg->is<AstExprCall>() || arg->is<AstExprVarargs>()))
{
auto [ty, refinement] = check(scope, arg, /*expectedType*/ std::nullopt, /*forceSingleton*/ false, /*generalize*/ false);
args.push_back(ty);
argumentRefinements.push_back(refinement);
}
else
{
auto [tp, refis] = checkPack(scope, arg, {});
argTail = tp;
argumentRefinements.insert(argumentRefinements.end(), refis.begin(), refis.end());
}
}
Checkpoint argEndCheckpoint = checkpoint(this);
if (matchSetmetatable(*call))
{
TypePack argTailPack;
if (argTail && args.size() < 2)
argTailPack = extendTypePack(*arena, builtinTypes, *argTail, 2 - args.size());
TypeId target = nullptr;
TypeId mt = nullptr;
if (args.size() + argTailPack.head.size() == 2)
{
target = args.size() > 0 ? args[0] : argTailPack.head[0];
mt = args.size() > 1 ? args[1] : argTailPack.head[args.size() == 0 ? 1 : 0];
}
else
{
std::vector<TypeId> unpackedTypes;
if (args.size() > 0)
target = args[0];
else
{
target = arena->addType(BlockedType{});
unpackedTypes.emplace_back(target);
}
mt = arena->addType(BlockedType{});
unpackedTypes.emplace_back(mt);
auto c = addConstraint(scope, call->location, UnpackConstraint{unpackedTypes, *argTail});
getMutable<BlockedType>(mt)->setOwner(c);
if (auto b = getMutable<BlockedType>(target); b && b->getOwner() == nullptr)
b->setOwner(c);
}
LUAU_ASSERT(target);
LUAU_ASSERT(mt);
target = follow(target);
AstExpr* targetExpr = call->args.data[0];
TypeId resultTy = nullptr;
if (isTableUnion(target))
{
const UnionType* targetUnion = get<UnionType>(target);
std::vector<TypeId> newParts;
for (TypeId ty : targetUnion)
newParts.push_back(arena->addType(MetatableType{ty, mt}));
resultTy = arena->addType(UnionType{std::move(newParts)});
}
else
resultTy = arena->addType(MetatableType{target, mt});
if (AstExprLocal* targetLocal = targetExpr->as<AstExprLocal>())
{
scope->bindings[targetLocal->local].typeId = resultTy;
DefId def = dfg->getDef(targetLocal);
scope->lvalueTypes[def] = resultTy; // TODO: typestates: track this as an assignment
scope->rvalueRefinements[def] = resultTy; // TODO: typestates: track this as an assignment
recordInferredBinding(targetLocal->local, resultTy);
}
return InferencePack{arena->addTypePack({resultTy}), {refinementArena.variadic(returnRefinements)}};
}
else
{
if (matchAssert(*call) && !argumentRefinements.empty())
applyRefinements(scope, call->args.data[0]->location, argumentRefinements[0]);
// TODO: How do expectedTypes play into this? Do they?
TypePackId rets = arena->addTypePack(BlockedTypePack{});
TypePackId argPack = addTypePack(std::move(args), argTail);
FunctionType ftv(TypeLevel{}, scope.get(), argPack, rets, std::nullopt, call->self);
/*
* To make bidirectional type checking work, we need to solve these constraints in a particular order:
*
* 1. Solve the function type
* 2. Propagate type information from the function type to the argument types
* 3. Solve the argument types
* 4. Solve the call
*/
NotNull<Constraint> checkConstraint = addConstraint(scope, call->func->location,
FunctionCheckConstraint{fnType, argPack, call, NotNull{&module->astTypes}, NotNull{&module->astExpectedTypes}});
forEachConstraint(funcBeginCheckpoint, funcEndCheckpoint, this, [checkConstraint](const ConstraintPtr& constraint) {
checkConstraint->dependencies.emplace_back(constraint.get());
});
NotNull<Constraint> callConstraint = addConstraint(scope, call->func->location,
FunctionCallConstraint{
fnType,
argPack,
rets,
call,
std::move(discriminantTypes),
&module->astOverloadResolvedTypes,
});
getMutable<BlockedTypePack>(rets)->owner = callConstraint.get();
callConstraint->dependencies.push_back(checkConstraint);
forEachConstraint(argBeginCheckpoint, argEndCheckpoint, this, [checkConstraint, callConstraint](const ConstraintPtr& constraint) {
constraint->dependencies.emplace_back(checkConstraint);
callConstraint->dependencies.emplace_back(constraint.get());
});
return InferencePack{rets, {refinementArena.variadic(returnRefinements)}};
}
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExpr* expr, std::optional<TypeId> expectedType, bool forceSingleton, bool generalize)
{
RecursionCounter counter{&recursionCount};
if (recursionCount >= FInt::LuauCheckRecursionLimit)
{
reportCodeTooComplex(expr->location);
return Inference{builtinTypes->errorRecoveryType()};
}
Inference result;
if (auto group = expr->as<AstExprGroup>())
result = check(scope, group->expr, expectedType, forceSingleton);
else if (auto stringExpr = expr->as<AstExprConstantString>())
result = check(scope, stringExpr, expectedType, forceSingleton);
else if (expr->is<AstExprConstantNumber>())
result = Inference{builtinTypes->numberType};
else if (auto boolExpr = expr->as<AstExprConstantBool>())
result = check(scope, boolExpr, expectedType, forceSingleton);
else if (expr->is<AstExprConstantNil>())
result = Inference{builtinTypes->nilType};
else if (auto local = expr->as<AstExprLocal>())
result = check(scope, local);
else if (auto global = expr->as<AstExprGlobal>())
result = check(scope, global);
else if (expr->is<AstExprVarargs>())
result = flattenPack(scope, expr->location, checkPack(scope, expr));
else if (auto call = expr->as<AstExprCall>())
result = flattenPack(scope, expr->location, checkPack(scope, call)); // TODO: needs predicates too
else if (auto a = expr->as<AstExprFunction>())
result = check(scope, a, expectedType, generalize);
else if (auto indexName = expr->as<AstExprIndexName>())
result = check(scope, indexName);
else if (auto indexExpr = expr->as<AstExprIndexExpr>())
result = check(scope, indexExpr);
else if (auto table = expr->as<AstExprTable>())
result = check(scope, table, expectedType);
else if (auto unary = expr->as<AstExprUnary>())
result = check(scope, unary);
else if (auto binary = expr->as<AstExprBinary>())
result = check(scope, binary, expectedType);
else if (auto ifElse = expr->as<AstExprIfElse>())
result = check(scope, ifElse, expectedType);
else if (auto typeAssert = expr->as<AstExprTypeAssertion>())
result = check(scope, typeAssert);
else if (auto interpString = expr->as<AstExprInterpString>())
result = check(scope, interpString);
else if (auto err = expr->as<AstExprError>())
{
// Open question: Should we traverse into this?
for (AstExpr* subExpr : err->expressions)
check(scope, subExpr);
result = Inference{builtinTypes->errorRecoveryType()};
}
else
{
LUAU_ASSERT(0);
result = Inference{freshType(scope)};
}
LUAU_ASSERT(result.ty);
module->astTypes[expr] = result.ty;
if (expectedType)
module->astExpectedTypes[expr] = *expectedType;
return result;
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprConstantString* string, std::optional<TypeId> expectedType, bool forceSingleton)
{
if (forceSingleton)
return Inference{arena->addType(SingletonType{StringSingleton{std::string{string->value.data, string->value.size}}})};
FreeType ft = FreeType{scope.get()};
ft.lowerBound = arena->addType(SingletonType{StringSingleton{std::string{string->value.data, string->value.size}}});
ft.upperBound = builtinTypes->stringType;
const TypeId freeTy = arena->addType(ft);
addConstraint(scope, string->location, PrimitiveTypeConstraint{freeTy, expectedType, builtinTypes->stringType});
return Inference{freeTy};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprConstantBool* boolExpr, std::optional<TypeId> expectedType, bool forceSingleton)
{
const TypeId singletonType = boolExpr->value ? builtinTypes->trueType : builtinTypes->falseType;
if (forceSingleton)
return Inference{singletonType};
FreeType ft = FreeType{scope.get()};
ft.lowerBound = singletonType;
ft.upperBound = builtinTypes->booleanType;
const TypeId freeTy = arena->addType(ft);
addConstraint(scope, boolExpr->location, PrimitiveTypeConstraint{freeTy, expectedType, builtinTypes->booleanType});
return Inference{freeTy};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprLocal* local)
{
const RefinementKey* key = dfg->getRefinementKey(local);
std::optional<DefId> rvalueDef = dfg->getRValueDefForCompoundAssign(local);
LUAU_ASSERT(key || rvalueDef);
std::optional<TypeId> maybeTy;
// if we have a refinement key, we can look up its type.
if (key)
maybeTy = lookup(scope, local->location, key->def);
// if the current def doesn't have a type, we might be doing a compound assignment
// and therefore might need to look at the rvalue def instead.
if (!maybeTy && rvalueDef)
maybeTy = lookup(scope, local->location, *rvalueDef);
if (maybeTy)
{
TypeId ty = follow(*maybeTy);
recordInferredBinding(local->local, ty);
return Inference{ty, refinementArena.proposition(key, builtinTypes->truthyType)};
}
else
ice->ice("CG: AstExprLocal came before its declaration?");
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprGlobal* global)
{
const RefinementKey* key = dfg->getRefinementKey(global);
std::optional<DefId> rvalueDef = dfg->getRValueDefForCompoundAssign(global);
LUAU_ASSERT(key || rvalueDef);
// we'll use whichever of the two definitions we have here.
DefId def = key ? key->def : *rvalueDef;
/* prepopulateGlobalScope() has already added all global functions to the environment by this point, so any
* global that is not already in-scope is definitely an unknown symbol.
*/
if (auto ty = lookup(scope, global->location, def, /*prototype=*/false))
{
rootScope->lvalueTypes[def] = *ty;
return Inference{*ty, refinementArena.proposition(key, builtinTypes->truthyType)};
}
else
return Inference{builtinTypes->errorRecoveryType()};
}
Inference ConstraintGenerator::checkIndexName(
const ScopePtr& scope, const RefinementKey* key, AstExpr* indexee, const std::string& index, Location indexLocation)
{
TypeId obj = check(scope, indexee).ty;
TypeId result = nullptr;
// We optimize away the HasProp constraint in simple cases so that we can
// reason about updates to unsealed tables more accurately.
const TableType* tt = getTableType(obj);
// This is a little bit iffy but I *believe* it is okay because, if the
// local's domain is going to be extended at all, it will be someplace after
// the current lexical position within the script.
if (!tt)
{
if (TypeIds* localDomain = localTypes.find(obj); localDomain && 1 == localDomain->size())
tt = getTableType(*localDomain->begin());
}
if (tt)
{
auto it = tt->props.find(index);
if (it != tt->props.end() && it->second.readTy.has_value())
result = *it->second.readTy;
}
if (!result)
{
result = arena->addType(BlockedType{});
auto c = addConstraint(
scope, indexee->location, HasPropConstraint{result, obj, std::move(index), ValueContext::RValue, inConditional(typeContext)});
getMutable<BlockedType>(result)->setOwner(c);
}
if (key)
{
if (auto ty = lookup(scope, indexLocation, key->def))
return Inference{*ty, refinementArena.proposition(key, builtinTypes->truthyType)};
scope->rvalueRefinements[key->def] = result;
}
if (key)
return Inference{result, refinementArena.proposition(key, builtinTypes->truthyType)};
else
return Inference{result};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprIndexName* indexName)
{
const RefinementKey* key = dfg->getRefinementKey(indexName);
return checkIndexName(scope, key, indexName->expr, indexName->index.value, indexName->indexLocation);
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprIndexExpr* indexExpr)
{
if (auto constantString = indexExpr->index->as<AstExprConstantString>())
{
const RefinementKey* key = dfg->getRefinementKey(indexExpr);
return checkIndexName(scope, key, indexExpr->expr, constantString->value.data, indexExpr->location);
}
TypeId obj = check(scope, indexExpr->expr).ty;
TypeId indexType = check(scope, indexExpr->index).ty;
TypeId result = arena->addType(BlockedType{});
const RefinementKey* key = dfg->getRefinementKey(indexExpr);
if (key)
{
if (auto ty = lookup(scope, indexExpr->location, key->def))
return Inference{*ty, refinementArena.proposition(key, builtinTypes->truthyType)};
scope->rvalueRefinements[key->def] = result;
}
auto c = addConstraint(scope, indexExpr->expr->location, HasIndexerConstraint{result, obj, indexType});
getMutable<BlockedType>(result)->setOwner(c);
if (key)
return Inference{result, refinementArena.proposition(key, builtinTypes->truthyType)};
else
return Inference{result};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprFunction* func, std::optional<TypeId> expectedType, bool generalize)
{
Checkpoint startCheckpoint = checkpoint(this);
FunctionSignature sig = checkFunctionSignature(scope, func, expectedType);
interiorTypes.push_back(std::vector<TypeId>{});
checkFunctionBody(sig.bodyScope, func);
Checkpoint endCheckpoint = checkpoint(this);
TypeId generalizedTy = arena->addType(BlockedType{});
NotNull<Constraint> gc =
addConstraint(sig.signatureScope, func->location, GeneralizationConstraint{generalizedTy, sig.signature, std::move(interiorTypes.back())});
getMutable<BlockedType>(generalizedTy)->setOwner(gc);
interiorTypes.pop_back();
Constraint* previous = nullptr;
forEachConstraint(startCheckpoint, endCheckpoint, this, [gc, &previous](const ConstraintPtr& constraint) {
gc->dependencies.emplace_back(constraint.get());
if (auto psc = get<PackSubtypeConstraint>(*constraint); psc && psc->returns)
{
if (previous)
constraint->dependencies.push_back(NotNull{previous});
previous = constraint.get();
}
});
if (generalize && hasFreeType(sig.signature))
{
return Inference{generalizedTy};
}
else
{
return Inference{sig.signature};
}
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprUnary* unary)
{
auto [operandType, refinement] = check(scope, unary->expr);
switch (unary->op)
{
case AstExprUnary::Op::Not:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().notFunc, {operandType}, {}, scope, unary->location);
return Inference{resultType, refinementArena.negation(refinement)};
}
case AstExprUnary::Op::Len:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().lenFunc, {operandType}, {}, scope, unary->location);
return Inference{resultType, refinementArena.negation(refinement)};
}
case AstExprUnary::Op::Minus:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().unmFunc, {operandType}, {}, scope, unary->location);
return Inference{resultType, refinementArena.negation(refinement)};
}
default: // msvc can't prove that this is exhaustive.
LUAU_UNREACHABLE();
}
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprBinary* binary, std::optional<TypeId> expectedType)
{
auto [leftType, rightType, refinement] = checkBinary(scope, binary, expectedType);
switch (binary->op)
{
case AstExprBinary::Op::Add:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().addFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Sub:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().subFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Mul:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().mulFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Div:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().divFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::FloorDiv:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().idivFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Pow:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().powFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Mod:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().modFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Concat:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().concatFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::And:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().andFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Or:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().orFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::CompareLt:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().ltFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::CompareGe:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().ltFunc,
{rightType, leftType}, // lua decided that `__ge(a, b)` is instead just `__lt(b, a)`
{}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::CompareLe:
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().leFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::CompareGt:
{
TypeId resultType = createTypeFunctionInstance(
builtinTypeFunctions().leFunc,
{rightType, leftType}, // lua decided that `__gt(a, b)` is instead just `__le(b, a)`
{}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::CompareEq:
case AstExprBinary::Op::CompareNe:
{
DefId leftDef = dfg->getDef(binary->left);
DefId rightDef = dfg->getDef(binary->right);
bool leftSubscripted = containsSubscriptedDefinition(leftDef);
bool rightSubscripted = containsSubscriptedDefinition(rightDef);
if (leftSubscripted && rightSubscripted)
{
// we cannot add nil in this case because then we will blindly accept comparisons that we should not.
}
else if (leftSubscripted)
leftType = makeUnion(scope, binary->location, leftType, builtinTypes->nilType);
else if (rightSubscripted)
rightType = makeUnion(scope, binary->location, rightType, builtinTypes->nilType);
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().eqFunc, {leftType, rightType}, {}, scope, binary->location);
return Inference{resultType, std::move(refinement)};
}
case AstExprBinary::Op::Op__Count:
ice->ice("Op__Count should never be generated in an AST.");
default: // msvc can't prove that this is exhaustive.
LUAU_UNREACHABLE();
}
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprIfElse* ifElse, std::optional<TypeId> expectedType)
{
RefinementId refinement = [&]() {
InConditionalContext flipper{&typeContext};
ScopePtr condScope = childScope(ifElse->condition, scope);
return check(condScope, ifElse->condition).refinement;
}();
ScopePtr thenScope = childScope(ifElse->trueExpr, scope);
applyRefinements(thenScope, ifElse->trueExpr->location, refinement);
TypeId thenType = check(thenScope, ifElse->trueExpr, expectedType).ty;
ScopePtr elseScope = childScope(ifElse->falseExpr, scope);
applyRefinements(elseScope, ifElse->falseExpr->location, refinementArena.negation(refinement));
TypeId elseType = check(elseScope, ifElse->falseExpr, expectedType).ty;
return Inference{expectedType ? *expectedType : makeUnion(scope, ifElse->location, thenType, elseType)};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprTypeAssertion* typeAssert)
{
check(scope, typeAssert->expr, std::nullopt);
return Inference{resolveType(scope, typeAssert->annotation, /* inTypeArguments */ false)};
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprInterpString* interpString)
{
for (AstExpr* expr : interpString->expressions)
check(scope, expr);
return Inference{builtinTypes->stringType};
}
std::tuple<TypeId, TypeId, RefinementId> ConstraintGenerator::checkBinary(
const ScopePtr& scope, AstExprBinary* binary, std::optional<TypeId> expectedType)
{
if (binary->op == AstExprBinary::And)
{
std::optional<TypeId> relaxedExpectedLhs;
if (expectedType)
relaxedExpectedLhs = arena->addType(UnionType{{builtinTypes->falsyType, *expectedType}});
auto [leftType, leftRefinement] = check(scope, binary->left, relaxedExpectedLhs);
ScopePtr rightScope = childScope(binary->right, scope);
applyRefinements(rightScope, binary->right->location, leftRefinement);
auto [rightType, rightRefinement] = check(rightScope, binary->right, expectedType);
return {leftType, rightType, refinementArena.conjunction(leftRefinement, rightRefinement)};
}
else if (binary->op == AstExprBinary::Or)
{
std::optional<TypeId> relaxedExpectedLhs;
if (expectedType)
relaxedExpectedLhs = arena->addType(UnionType{{builtinTypes->falsyType, *expectedType}});
auto [leftType, leftRefinement] = check(scope, binary->left, relaxedExpectedLhs);
ScopePtr rightScope = childScope(binary->right, scope);
applyRefinements(rightScope, binary->right->location, refinementArena.negation(leftRefinement));
auto [rightType, rightRefinement] = check(rightScope, binary->right, expectedType);
return {leftType, rightType, refinementArena.disjunction(leftRefinement, rightRefinement)};
}
else if (auto typeguard = matchTypeGuard(binary))
{
TypeId leftType = check(scope, binary->left).ty;
TypeId rightType = check(scope, binary->right).ty;
const RefinementKey* key = dfg->getRefinementKey(typeguard->target);
if (!key)
return {leftType, rightType, nullptr};
TypeId discriminantTy = builtinTypes->neverType;
if (typeguard->type == "nil")
discriminantTy = builtinTypes->nilType;
else if (typeguard->type == "string")
discriminantTy = builtinTypes->stringType;
else if (typeguard->type == "number")
discriminantTy = builtinTypes->numberType;
else if (typeguard->type == "boolean")
discriminantTy = builtinTypes->booleanType;
else if (typeguard->type == "thread")
discriminantTy = builtinTypes->threadType;
else if (typeguard->type == "buffer")
discriminantTy = builtinTypes->bufferType;
else if (typeguard->type == "table")
discriminantTy = builtinTypes->tableType;
else if (typeguard->type == "function")
discriminantTy = builtinTypes->functionType;
else if (typeguard->type == "userdata")
{
// For now, we don't really care about being accurate with userdata if the typeguard was using typeof.
discriminantTy = builtinTypes->classType;
}
else if (!typeguard->isTypeof && typeguard->type == "vector")
discriminantTy = builtinTypes->neverType; // TODO: figure out a way to deal with this quirky type
else if (!typeguard->isTypeof)
discriminantTy = builtinTypes->neverType;
else if (auto typeFun = globalScope->lookupType(typeguard->type); typeFun && typeFun->typeParams.empty() && typeFun->typePackParams.empty())
{
TypeId ty = follow(typeFun->type);
// We're only interested in the root class of any classes.
if (auto ctv = get<ClassType>(ty); ctv && ctv->parent == builtinTypes->classType)
discriminantTy = ty;
}
RefinementId proposition = refinementArena.proposition(key, discriminantTy);
if (binary->op == AstExprBinary::CompareEq)
return {leftType, rightType, proposition};
else if (binary->op == AstExprBinary::CompareNe)
return {leftType, rightType, refinementArena.negation(proposition)};
else
ice->ice("matchTypeGuard should only return a Some under `==` or `~=`!");
}
else if (binary->op == AstExprBinary::CompareEq || binary->op == AstExprBinary::CompareNe)
{
// We are checking a binary expression of the form a op b
// Just because a op b is epxected to return a bool, doesn't mean a, b are expected to be bools too
TypeId leftType = check(scope, binary->left, {}, true).ty;
TypeId rightType = check(scope, binary->right, {}, true).ty;
RefinementId leftRefinement = refinementArena.proposition(dfg->getRefinementKey(binary->left), rightType);
RefinementId rightRefinement = refinementArena.proposition(dfg->getRefinementKey(binary->right), leftType);
if (binary->op == AstExprBinary::CompareNe)
{
leftRefinement = refinementArena.negation(leftRefinement);
rightRefinement = refinementArena.negation(rightRefinement);
}
return {leftType, rightType, refinementArena.equivalence(leftRefinement, rightRefinement)};
}
else
{
TypeId leftType = check(scope, binary->left).ty;
TypeId rightType = check(scope, binary->right).ty;
return {leftType, rightType, nullptr};
}
}
void ConstraintGenerator::visitLValue(const ScopePtr& scope, AstExpr* expr, TypeId rhsType)
{
if (auto e = expr->as<AstExprLocal>())
visitLValue(scope, e, rhsType);
else if (auto e = expr->as<AstExprGlobal>())
visitLValue(scope, e, rhsType);
else if (auto e = expr->as<AstExprIndexName>())
visitLValue(scope, e, rhsType);
else if (auto e = expr->as<AstExprIndexExpr>())
visitLValue(scope, e, rhsType);
else if (auto e = expr->as<AstExprError>())
{
// Nothing?
}
else
ice->ice("Unexpected lvalue expression", expr->location);
}
void ConstraintGenerator::visitLValue(const ScopePtr& scope, AstExprLocal* local, TypeId rhsType)
{
std::optional<TypeId> annotatedTy = scope->lookup(local->local);
LUAU_ASSERT(annotatedTy);
const DefId defId = dfg->getDef(local);
std::optional<TypeId> ty = scope->lookupUnrefinedType(defId);
if (ty)
{
TypeIds* localDomain = localTypes.find(*ty);
if (localDomain)
localDomain->insert(rhsType);
}
else
{
ty = arena->addType(BlockedType{});
localTypes[*ty].insert(rhsType);
if (annotatedTy)
{
switch (shouldSuppressErrors(normalizer, *annotatedTy))
{
case ErrorSuppression::DoNotSuppress:
break;
case ErrorSuppression::Suppress:
ty = simplifyUnion(builtinTypes, arena, *ty, builtinTypes->errorType).result;
break;
case ErrorSuppression::NormalizationFailed:
reportError(local->local->annotation->location, NormalizationTooComplex{});
break;
}
}
scope->lvalueTypes[defId] = *ty;
}
recordInferredBinding(local->local, *ty);
if (annotatedTy)
addConstraint(scope, local->location, SubtypeConstraint{rhsType, *annotatedTy});
if (TypeIds* localDomain = localTypes.find(*ty))
localDomain->insert(rhsType);
}
void ConstraintGenerator::visitLValue(const ScopePtr& scope, AstExprGlobal* global, TypeId rhsType)
{
std::optional<TypeId> annotatedTy = scope->lookup(Symbol{global->name});
if (annotatedTy)
{
DefId def = dfg->getDef(global);
rootScope->lvalueTypes[def] = rhsType;
addConstraint(scope, global->location, SubtypeConstraint{rhsType, *annotatedTy});
}
}
void ConstraintGenerator::visitLValue(const ScopePtr& scope, AstExprIndexName* expr, TypeId rhsType)
{
TypeId lhsTy = check(scope, expr->expr).ty;
TypeId propTy = arena->addType(BlockedType{});
module->astTypes[expr] = propTy;
bool incremented = recordPropertyAssignment(lhsTy);
auto apc = addConstraint(scope, expr->location, AssignPropConstraint{lhsTy, expr->index.value, rhsType, expr->indexLocation, propTy, incremented});
getMutable<BlockedType>(propTy)->setOwner(apc);
}
void ConstraintGenerator::visitLValue(const ScopePtr& scope, AstExprIndexExpr* expr, TypeId rhsType)
{
if (auto constantString = expr->index->as<AstExprConstantString>())
{
TypeId lhsTy = check(scope, expr->expr).ty;
TypeId propTy = arena->addType(BlockedType{});
module->astTypes[expr] = propTy;
module->astTypes[expr->index] = builtinTypes->stringType; // FIXME? Singleton strings exist.
std::string propName{constantString->value.data, constantString->value.size};
bool incremented = recordPropertyAssignment(lhsTy);
auto apc = addConstraint(scope, expr->location, AssignPropConstraint{lhsTy, std::move(propName), rhsType, expr->index->location, propTy, incremented});
getMutable<BlockedType>(propTy)->setOwner(apc);
return;
}
TypeId lhsTy = check(scope, expr->expr).ty;
TypeId indexTy = check(scope, expr->index).ty;
TypeId propTy = arena->addType(BlockedType{});
module->astTypes[expr] = propTy;
auto aic = addConstraint(scope, expr->location, AssignIndexConstraint{lhsTy, indexTy, rhsType, propTy});
getMutable<BlockedType>(propTy)->setOwner(aic);
}
Inference ConstraintGenerator::check(const ScopePtr& scope, AstExprTable* expr, std::optional<TypeId> expectedType)
{
TypeId ty = arena->addType(TableType{});
TableType* ttv = getMutable<TableType>(ty);
LUAU_ASSERT(ttv);
ttv->state = TableState::Unsealed;
ttv->definitionModuleName = module->name;
ttv->scope = scope.get();
interiorTypes.back().push_back(ty);
TypeIds indexKeyLowerBound;
TypeIds indexValueLowerBound;
auto createIndexer = [&indexKeyLowerBound, &indexValueLowerBound](const Location& location, TypeId currentIndexType, TypeId currentResultType) {
indexKeyLowerBound.insert(follow(currentIndexType));
indexValueLowerBound.insert(follow(currentResultType));
};
TypeIds valuesLowerBound;
for (const AstExprTable::Item& item : expr->items)
{
// Expected types are threaded through table literals separately via the
// function matchLiteralType.
TypeId itemTy = check(scope, item.value).ty;
if (item.key)
{
// Even though we don't need to use the type of the item's key if
// it's a string constant, we still want to check it to populate
// astTypes.
TypeId keyTy = check(scope, item.key).ty;
if (AstExprConstantString* key = item.key->as<AstExprConstantString>())
{
std::string propName{key->value.data, key->value.size};
ttv->props[propName] = {itemTy, /*deprecated*/ false, {}, key->location};
}
else
{
createIndexer(item.key->location, keyTy, itemTy);
}
}
else
{
TypeId numberType = builtinTypes->numberType;
// FIXME? The location isn't quite right here. Not sure what is
// right.
createIndexer(item.value->location, numberType, itemTy);
}
}
if (!indexKeyLowerBound.empty())
{
LUAU_ASSERT(!indexValueLowerBound.empty());
TypeId indexKey = indexKeyLowerBound.size() == 1
? *indexKeyLowerBound.begin()
: arena->addType(UnionType{std::vector(indexKeyLowerBound.begin(), indexKeyLowerBound.end())});
TypeId indexValue = indexValueLowerBound.size() == 1
? *indexValueLowerBound.begin()
: arena->addType(UnionType{std::vector(indexValueLowerBound.begin(), indexValueLowerBound.end())});
ttv->indexer = TableIndexer{indexKey, indexValue};
}
if (expectedType)
{
Unifier2 unifier{arena, builtinTypes, NotNull{scope.get()}, ice};
std::vector<TypeId> toBlock;
matchLiteralType(
NotNull{&module->astTypes}, NotNull{&module->astExpectedTypes}, builtinTypes, arena, NotNull{&unifier}, *expectedType, ty, expr, toBlock);
}
return Inference{ty};
}
ConstraintGenerator::FunctionSignature ConstraintGenerator::checkFunctionSignature(
const ScopePtr& parent, AstExprFunction* fn, std::optional<TypeId> expectedType, std::optional<Location> originalName)
{
ScopePtr signatureScope = nullptr;
ScopePtr bodyScope = nullptr;
TypePackId returnType = nullptr;
std::vector<TypeId> genericTypes;
std::vector<TypePackId> genericTypePacks;
if (expectedType)
expectedType = follow(*expectedType);
bool hasGenerics = fn->generics.size > 0 || fn->genericPacks.size > 0;
signatureScope = childScope(fn, parent);
// We need to assign returnType before creating bodyScope so that the
// return type gets propogated to bodyScope.
returnType = freshTypePack(signatureScope);
signatureScope->returnType = returnType;
bodyScope = childScope(fn->body, signatureScope);
if (hasGenerics)
{
std::vector<std::pair<Name, GenericTypeDefinition>> genericDefinitions = createGenerics(signatureScope, fn->generics);
std::vector<std::pair<Name, GenericTypePackDefinition>> genericPackDefinitions = createGenericPacks(signatureScope, fn->genericPacks);
// We do not support default values on function generics, so we only
// care about the types involved.
for (const auto& [name, g] : genericDefinitions)
{
genericTypes.push_back(g.ty);
}
for (const auto& [name, g] : genericPackDefinitions)
{
genericTypePacks.push_back(g.tp);
}
// Local variable works around an odd gcc 11.3 warning: <anonymous> may be used uninitialized
std::optional<TypeId> none = std::nullopt;
expectedType = none;
}
std::vector<TypeId> argTypes;
std::vector<std::optional<FunctionArgument>> argNames;
TypePack expectedArgPack;
const FunctionType* expectedFunction = expectedType ? get<FunctionType>(*expectedType) : nullptr;
// This check ensures that expectedType is precisely optional and not any (since any is also an optional type)
if (expectedType && isOptional(*expectedType) && !get<AnyType>(*expectedType))
{
if (auto ut = get<UnionType>(*expectedType))
{
for (auto u : ut)
{
if (get<FunctionType>(u) && !isNil(u))
{
expectedFunction = get<FunctionType>(u);
break;
}
}
}
}
if (expectedFunction)
{
expectedArgPack = extendTypePack(*arena, builtinTypes, expectedFunction->argTypes, fn->args.size);
genericTypes = expectedFunction->generics;
genericTypePacks = expectedFunction->genericPacks;
}
if (fn->self)
{
TypeId selfType = freshType(signatureScope);
argTypes.push_back(selfType);
argNames.emplace_back(FunctionArgument{fn->self->name.value, fn->self->location});
signatureScope->bindings[fn->self] = Binding{selfType, fn->self->location};
DefId def = dfg->getDef(fn->self);
signatureScope->lvalueTypes[def] = selfType;
signatureScope->rvalueRefinements[def] = selfType;
}
for (size_t i = 0; i < fn->args.size; ++i)
{
AstLocal* local = fn->args.data[i];
TypeId argTy = nullptr;
if (local->annotation)
argTy = resolveType(signatureScope, local->annotation, /* inTypeArguments */ false, /* replaceErrorWithFresh*/ true);
else
{
if (i < expectedArgPack.head.size())
argTy = expectedArgPack.head[i];
else
argTy = freshType(signatureScope);
}
argTypes.push_back(argTy);
argNames.emplace_back(FunctionArgument{local->name.value, local->location});
signatureScope->bindings[local] = Binding{argTy, local->location};
DefId def = dfg->getDef(local);
signatureScope->lvalueTypes[def] = argTy;
signatureScope->rvalueRefinements[def] = argTy;
}
TypePackId varargPack = nullptr;
if (fn->vararg)
{
if (fn->varargAnnotation)
{
TypePackId annotationType =
resolveTypePack(signatureScope, fn->varargAnnotation, /* inTypeArguments */ false, /* replaceErrorWithFresh */ true);
varargPack = annotationType;
}
else if (expectedArgPack.tail && get<VariadicTypePack>(*expectedArgPack.tail))
varargPack = *expectedArgPack.tail;
else
varargPack = builtinTypes->anyTypePack;
signatureScope->varargPack = varargPack;
bodyScope->varargPack = varargPack;
}
else
{
varargPack = arena->addTypePack(VariadicTypePack{builtinTypes->anyType, /*hidden*/ true});
// We do not add to signatureScope->varargPack because ... is not valid
// in functions without an explicit ellipsis.
signatureScope->varargPack = std::nullopt;
bodyScope->varargPack = std::nullopt;
}
LUAU_ASSERT(nullptr != varargPack);
// If there is both an annotation and an expected type, the annotation wins.
// Type checking will sort out any discrepancies later.
if (fn->returnAnnotation)
{
TypePackId annotatedRetType =
resolveTypePack(signatureScope, *fn->returnAnnotation, /* inTypeArguments */ false, /* replaceErrorWithFresh*/ true);
// We bind the annotated type directly here so that, when we need to
// generate constraints for return types, we have a guarantee that we
// know the annotated return type already, if one was provided.
LUAU_ASSERT(get<FreeTypePack>(returnType));
emplaceTypePack<BoundTypePack>(asMutable(returnType), annotatedRetType);
}
else if (expectedFunction)
{
emplaceTypePack<BoundTypePack>(asMutable(returnType), expectedFunction->retTypes);
}
// TODO: Preserve argument names in the function's type.
FunctionType actualFunction{TypeLevel{}, parent.get(), arena->addTypePack(argTypes, varargPack), returnType};
actualFunction.generics = std::move(genericTypes);
actualFunction.genericPacks = std::move(genericTypePacks);
actualFunction.argNames = std::move(argNames);
actualFunction.hasSelf = fn->self != nullptr;
FunctionDefinition defn;
defn.definitionModuleName = module->name;
defn.definitionLocation = fn->location;
defn.varargLocation = fn->vararg ? std::make_optional(fn->varargLocation) : std::nullopt;
defn.originalNameLocation = originalName.value_or(Location(fn->location.begin, 0));
actualFunction.definition = defn;
TypeId actualFunctionType = arena->addType(std::move(actualFunction));
LUAU_ASSERT(actualFunctionType);
module->astTypes[fn] = actualFunctionType;
if (expectedType && get<FreeType>(*expectedType))
bindFreeType(*expectedType, actualFunctionType);
return {
/* signature */ actualFunctionType,
/* signatureScope */ signatureScope,
/* bodyScope */ bodyScope,
};
}
void ConstraintGenerator::checkFunctionBody(const ScopePtr& scope, AstExprFunction* fn)
{
// If it is possible for execution to reach the end of the function, the return type must be compatible with ()
ControlFlow cf = visitBlockWithoutChildScope(scope, fn->body);
if (cf == ControlFlow::None)
addConstraint(scope, fn->location, PackSubtypeConstraint{builtinTypes->emptyTypePack, scope->returnType});
}
TypeId ConstraintGenerator::resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments, bool replaceErrorWithFresh)
{
TypeId result = nullptr;
if (auto ref = ty->as<AstTypeReference>())
{
if (FFlag::DebugLuauMagicTypes)
{
if (ref->name == "_luau_ice")
ice->ice("_luau_ice encountered", ty->location);
else if (ref->name == "_luau_print")
{
if (ref->parameters.size != 1 || !ref->parameters.data[0].type)
{
reportError(ty->location, GenericError{"_luau_print requires one generic parameter"});
module->astResolvedTypes[ty] = builtinTypes->errorRecoveryType();
return builtinTypes->errorRecoveryType();
}
else
return resolveType(scope, ref->parameters.data[0].type, inTypeArguments);
}
}
std::optional<TypeFun> alias;
if (ref->prefix.has_value())
{
alias = scope->lookupImportedType(ref->prefix->value, ref->name.value);
}
else
{
alias = scope->lookupType(ref->name.value);
}
if (alias.has_value())
{
// If the alias is not generic, we don't need to set up a blocked
// type and an instantiation constraint.
if (alias.has_value() && alias->typeParams.empty() && alias->typePackParams.empty())
{
result = alias->type;
}
else
{
std::vector<TypeId> parameters;
std::vector<TypePackId> packParameters;
for (const AstTypeOrPack& p : ref->parameters)
{
// We do not enforce the ordering of types vs. type packs here;
// that is done in the parser.
if (p.type)
{
parameters.push_back(resolveType(scope, p.type, /* inTypeArguments */ true));
}
else if (p.typePack)
{
packParameters.push_back(resolveTypePack(scope, p.typePack, /* inTypeArguments */ true));
}
else
{
// This indicates a parser bug: one of these two pointers
// should be set.
LUAU_ASSERT(false);
}
}
result = arena->addType(PendingExpansionType{ref->prefix, ref->name, parameters, packParameters});
// If we're not in a type argument context, we need to create a constraint that expands this.
// The dispatching of the above constraint will queue up additional constraints for nested
// type function applications.
if (!inTypeArguments)
addConstraint(scope, ty->location, TypeAliasExpansionConstraint{/* target */ result});
}
}
else
{
result = builtinTypes->errorRecoveryType();
if (replaceErrorWithFresh)
result = freshType(scope);
}
}
else if (auto tab = ty->as<AstTypeTable>())
{
TableType::Props props;
std::optional<TableIndexer> indexer;
for (const AstTableProp& prop : tab->props)
{
// TODO: Recursion limit.
TypeId propTy = resolveType(scope, prop.type, inTypeArguments);
Property& p = props[prop.name.value];
p.typeLocation = prop.location;
switch (prop.access)
{
case AstTableAccess::ReadWrite:
p.readTy = propTy;
p.writeTy = propTy;
break;
case AstTableAccess::Read:
p.readTy = propTy;
break;
case AstTableAccess::Write:
reportError(*prop.accessLocation, GenericError{"write keyword is illegal here"});
p.readTy = propTy;
p.writeTy = propTy;
break;
default:
ice->ice("Unexpected property access " + std::to_string(int(prop.access)));
break;
}
}
if (AstTableIndexer* astIndexer = tab->indexer)
{
if (astIndexer->access == AstTableAccess::Read)
reportError(astIndexer->accessLocation.value_or(Location{}), GenericError{"read keyword is illegal here"});
else if (astIndexer->access == AstTableAccess::Write)
reportError(astIndexer->accessLocation.value_or(Location{}), GenericError{"write keyword is illegal here"});
else if (astIndexer->access == AstTableAccess::ReadWrite)
{
// TODO: Recursion limit.
indexer = TableIndexer{
resolveType(scope, astIndexer->indexType, inTypeArguments),
resolveType(scope, astIndexer->resultType, inTypeArguments),
};
}
else
ice->ice("Unexpected property access " + std::to_string(int(astIndexer->access)));
}
result = arena->addType(TableType{props, indexer, scope->level, scope.get(), TableState::Sealed});
}
else if (auto fn = ty->as<AstTypeFunction>())
{
// TODO: Recursion limit.
bool hasGenerics = fn->generics.size > 0 || fn->genericPacks.size > 0;
ScopePtr signatureScope = nullptr;
std::vector<TypeId> genericTypes;
std::vector<TypePackId> genericTypePacks;
// If we don't have generics, we do not need to generate a child scope
// for the generic bindings to live on.
if (hasGenerics)
{
signatureScope = childScope(fn, scope);
std::vector<std::pair<Name, GenericTypeDefinition>> genericDefinitions = createGenerics(signatureScope, fn->generics);
std::vector<std::pair<Name, GenericTypePackDefinition>> genericPackDefinitions = createGenericPacks(signatureScope, fn->genericPacks);
for (const auto& [name, g] : genericDefinitions)
{
genericTypes.push_back(g.ty);
}
for (const auto& [name, g] : genericPackDefinitions)
{
genericTypePacks.push_back(g.tp);
}
}
else
{
// To eliminate the need to branch on hasGenerics below, we say that
// the signature scope is the parent scope if we don't have
// generics.
signatureScope = scope;
}
TypePackId argTypes = resolveTypePack(signatureScope, fn->argTypes, inTypeArguments, replaceErrorWithFresh);
TypePackId returnTypes = resolveTypePack(signatureScope, fn->returnTypes, inTypeArguments, replaceErrorWithFresh);
// TODO: FunctionType needs a pointer to the scope so that we know
// how to quantify/instantiate it.
FunctionType ftv{TypeLevel{}, scope.get(), {}, {}, argTypes, returnTypes};
ftv.isCheckedFunction = FFlag::LuauAttributeSyntax ? fn->isCheckedFunction() : false;
// This replicates the behavior of the appropriate FunctionType
// constructors.
ftv.generics = std::move(genericTypes);
ftv.genericPacks = std::move(genericTypePacks);
ftv.argNames.reserve(fn->argNames.size);
for (const auto& el : fn->argNames)
{
if (el)
{
const auto& [name, location] = *el;
ftv.argNames.push_back(FunctionArgument{name.value, location});
}
else
{
ftv.argNames.push_back(std::nullopt);
}
}
result = arena->addType(std::move(ftv));
}
else if (auto tof = ty->as<AstTypeTypeof>())
{
// TODO: Recursion limit.
TypeId exprType = check(scope, tof->expr).ty;
result = exprType;
}
else if (auto unionAnnotation = ty->as<AstTypeUnion>())
{
std::vector<TypeId> parts;
for (AstType* part : unionAnnotation->types)
{
// TODO: Recursion limit.
parts.push_back(resolveType(scope, part, inTypeArguments));
}
result = arena->addType(UnionType{parts});
}
else if (auto intersectionAnnotation = ty->as<AstTypeIntersection>())
{
std::vector<TypeId> parts;
for (AstType* part : intersectionAnnotation->types)
{
// TODO: Recursion limit.
parts.push_back(resolveType(scope, part, inTypeArguments));
}
result = arena->addType(IntersectionType{parts});
}
else if (auto boolAnnotation = ty->as<AstTypeSingletonBool>())
{
if (boolAnnotation->value)
result = builtinTypes->trueType;
else
result = builtinTypes->falseType;
}
else if (auto stringAnnotation = ty->as<AstTypeSingletonString>())
{
result = arena->addType(SingletonType(StringSingleton{std::string(stringAnnotation->value.data, stringAnnotation->value.size)}));
}
else if (ty->is<AstTypeError>())
{
result = builtinTypes->errorRecoveryType();
if (replaceErrorWithFresh)
result = freshType(scope);
}
else
{
LUAU_ASSERT(0);
result = builtinTypes->errorRecoveryType();
}
module->astResolvedTypes[ty] = result;
return result;
}
TypePackId ConstraintGenerator::resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArgument, bool replaceErrorWithFresh)
{
TypePackId result;
if (auto expl = tp->as<AstTypePackExplicit>())
{
result = resolveTypePack(scope, expl->typeList, inTypeArgument, replaceErrorWithFresh);
}
else if (auto var = tp->as<AstTypePackVariadic>())
{
TypeId ty = resolveType(scope, var->variadicType, inTypeArgument, replaceErrorWithFresh);
result = arena->addTypePack(TypePackVar{VariadicTypePack{ty}});
}
else if (auto gen = tp->as<AstTypePackGeneric>())
{
if (std::optional<TypePackId> lookup = scope->lookupPack(gen->genericName.value))
{
result = *lookup;
}
else
{
reportError(tp->location, UnknownSymbol{gen->genericName.value, UnknownSymbol::Context::Type});
result = builtinTypes->errorRecoveryTypePack();
}
}
else
{
LUAU_ASSERT(0);
result = builtinTypes->errorRecoveryTypePack();
}
module->astResolvedTypePacks[tp] = result;
return result;
}
TypePackId ConstraintGenerator::resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments, bool replaceErrorWithFresh)
{
std::vector<TypeId> head;
for (AstType* headTy : list.types)
{
head.push_back(resolveType(scope, headTy, inTypeArguments, replaceErrorWithFresh));
}
std::optional<TypePackId> tail = std::nullopt;
if (list.tailType)
{
tail = resolveTypePack(scope, list.tailType, inTypeArguments, replaceErrorWithFresh);
}
return addTypePack(std::move(head), tail);
}
std::vector<std::pair<Name, GenericTypeDefinition>> ConstraintGenerator::createGenerics(
const ScopePtr& scope, AstArray<AstGenericType> generics, bool useCache, bool addTypes)
{
std::vector<std::pair<Name, GenericTypeDefinition>> result;
for (const auto& generic : generics)
{
TypeId genericTy = nullptr;
if (auto it = scope->parent->typeAliasTypeParameters.find(generic.name.value); useCache && it != scope->parent->typeAliasTypeParameters.end())
genericTy = it->second;
else
{
genericTy = arena->addType(GenericType{scope.get(), generic.name.value});
scope->parent->typeAliasTypeParameters[generic.name.value] = genericTy;
}
std::optional<TypeId> defaultTy = std::nullopt;
if (generic.defaultValue)
defaultTy = resolveType(scope, generic.defaultValue, /* inTypeArguments */ false);
if (addTypes)
scope->privateTypeBindings[generic.name.value] = TypeFun{genericTy};
result.push_back({generic.name.value, GenericTypeDefinition{genericTy, defaultTy}});
}
return result;
}
std::vector<std::pair<Name, GenericTypePackDefinition>> ConstraintGenerator::createGenericPacks(
const ScopePtr& scope, AstArray<AstGenericTypePack> generics, bool useCache, bool addTypes)
{
std::vector<std::pair<Name, GenericTypePackDefinition>> result;
for (const auto& generic : generics)
{
TypePackId genericTy;
if (auto it = scope->parent->typeAliasTypePackParameters.find(generic.name.value);
useCache && it != scope->parent->typeAliasTypePackParameters.end())
genericTy = it->second;
else
{
genericTy = arena->addTypePack(TypePackVar{GenericTypePack{scope.get(), generic.name.value}});
scope->parent->typeAliasTypePackParameters[generic.name.value] = genericTy;
}
std::optional<TypePackId> defaultTy = std::nullopt;
if (generic.defaultValue)
defaultTy = resolveTypePack(scope, generic.defaultValue, /* inTypeArguments */ false);
if (addTypes)
scope->privateTypePackBindings[generic.name.value] = genericTy;
result.push_back({generic.name.value, GenericTypePackDefinition{genericTy, defaultTy}});
}
return result;
}
Inference ConstraintGenerator::flattenPack(const ScopePtr& scope, Location location, InferencePack pack)
{
const auto& [tp, refinements] = pack;
RefinementId refinement = nullptr;
if (!refinements.empty())
refinement = refinements[0];
if (auto f = first(tp))
return Inference{*f, refinement};
TypeId typeResult = arena->addType(BlockedType{});
auto c = addConstraint(scope, location, UnpackConstraint{{typeResult}, tp});
getMutable<BlockedType>(typeResult)->setOwner(c);
return Inference{typeResult, refinement};
}
void ConstraintGenerator::reportError(Location location, TypeErrorData err)
{
errors.push_back(TypeError{location, module->name, std::move(err)});
if (logger)
logger->captureGenerationError(errors.back());
}
void ConstraintGenerator::reportCodeTooComplex(Location location)
{
errors.push_back(TypeError{location, module->name, CodeTooComplex{}});
if (logger)
logger->captureGenerationError(errors.back());
}
TypeId ConstraintGenerator::makeUnion(const ScopePtr& scope, Location location, TypeId lhs, TypeId rhs)
{
if (get<NeverType>(follow(lhs)))
return rhs;
if (get<NeverType>(follow(rhs)))
return lhs;
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().unionFunc, {lhs, rhs}, {}, scope, location);
return resultType;
}
TypeId ConstraintGenerator::makeIntersect(const ScopePtr& scope, Location location, TypeId lhs, TypeId rhs)
{
TypeId resultType = createTypeFunctionInstance(builtinTypeFunctions().intersectFunc, {lhs, rhs}, {}, scope, location);
return resultType;
}
struct GlobalPrepopulator : AstVisitor
{
const NotNull<Scope> globalScope;
const NotNull<TypeArena> arena;
const NotNull<const DataFlowGraph> dfg;
GlobalPrepopulator(NotNull<Scope> globalScope, NotNull<TypeArena> arena, NotNull<const DataFlowGraph> dfg)
: globalScope(globalScope)
, arena(arena)
, dfg(dfg)
{
}
bool visit(AstExprGlobal* global) override
{
if (auto ty = globalScope->lookup(global->name))
{
DefId def = dfg->getDef(global);
globalScope->lvalueTypes[def] = *ty;
}
return true;
}
bool visit(AstStatFunction* function) override
{
if (AstExprGlobal* g = function->name->as<AstExprGlobal>())
{
TypeId bt = arena->addType(BlockedType{});
globalScope->bindings[g->name] = Binding{bt};
}
return true;
}
bool visit(AstType*) override
{
return true;
}
bool visit(class AstTypePack* node) override
{
return true;
}
};
void ConstraintGenerator::prepopulateGlobalScope(const ScopePtr& globalScope, AstStatBlock* program)
{
GlobalPrepopulator gp{NotNull{globalScope.get()}, arena, dfg};
if (prepareModuleScope)
prepareModuleScope(module->name, globalScope);
program->visit(&gp);
}
bool ConstraintGenerator::recordPropertyAssignment(TypeId ty)
{
DenseHashSet<TypeId> seen{nullptr};
VecDeque<TypeId> queue;
queue.push_back(ty);
bool incremented = false;
while (!queue.empty())
{
const TypeId t = follow(queue.front());
queue.pop_front();
if (seen.find(t))
continue;
seen.insert(t);
if (auto tt = getMutable<TableType>(t); tt && tt->state == TableState::Unsealed)
{
tt->remainingProps += 1;
incremented = true;
}
else if (auto mt = get<MetatableType>(t))
queue.push_back(mt->table);
else if (TypeIds* localDomain = localTypes.find(t))
{
for (TypeId domainTy : *localDomain)
queue.push_back(domainTy);
}
else if (auto ut = get<UnionType>(t))
{
for (TypeId part : ut)
queue.push_back(part);
}
}
return incremented;
}
void ConstraintGenerator::recordInferredBinding(AstLocal* local, TypeId ty)
{
if (InferredBinding* ib = inferredBindings.find(local))
ib->types.insert(ty);
}
void ConstraintGenerator::fillInInferredBindings(const ScopePtr& globalScope, AstStatBlock* block)
{
for (const auto& [symbol, p] : inferredBindings)
{
const auto& [scope, location, types] = p;
std::vector<TypeId> tys(types.begin(), types.end());
if (tys.size() == 1)
scope->bindings[symbol] = Binding{tys.front(), location};
else
{
TypeId ty = createTypeFunctionInstance(builtinTypeFunctions().unionFunc, std::move(tys), {}, globalScope, location);
scope->bindings[symbol] = Binding{ty, location};
}
}
}
std::vector<std::optional<TypeId>> ConstraintGenerator::getExpectedCallTypesForFunctionOverloads(const TypeId fnType)
{
std::vector<TypeId> funTys;
if (auto it = get<IntersectionType>(follow(fnType)))
{
for (TypeId intersectionComponent : it)
{
funTys.push_back(intersectionComponent);
}
}
std::vector<std::optional<TypeId>> expectedTypes;
// For a list of functions f_0 : e_0 -> r_0, ... f_n : e_n -> r_n,
// emit a list of arguments that the function could take at each position
// by unioning the arguments at each place
auto assignOption = [this, &expectedTypes](size_t index, TypeId ty) {
if (index == expectedTypes.size())
expectedTypes.push_back(ty);
else if (ty)
{
auto& el = expectedTypes[index];
if (!el)
el = ty;
else
{
std::vector<TypeId> result = reduceUnion({*el, ty});
if (result.empty())
el = builtinTypes->neverType;
else if (result.size() == 1)
el = result[0];
else
el = module->internalTypes.addType(UnionType{std::move(result)});
}
}
};
for (const TypeId overload : funTys)
{
if (const FunctionType* ftv = get<FunctionType>(follow(overload)))
{
auto [argsHead, argsTail] = flatten(ftv->argTypes);
size_t start = ftv->hasSelf ? 1 : 0;
size_t index = 0;
for (size_t i = start; i < argsHead.size(); ++i)
assignOption(index++, argsHead[i]);
if (argsTail)
{
argsTail = follow(*argsTail);
if (const VariadicTypePack* vtp = get<VariadicTypePack>(*argsTail))
{
while (index < funTys.size())
assignOption(index++, vtp->ty);
}
}
}
}
// TODO vvijay Feb 24, 2023 apparently we have to demote the types here?
return expectedTypes;
}
TypeId ConstraintGenerator::createTypeFunctionInstance(
const TypeFunction& function, std::vector<TypeId> typeArguments, std::vector<TypePackId> packArguments, const ScopePtr& scope, Location location)
{
TypeId result = arena->addTypeFunction(function, typeArguments, packArguments);
addConstraint(scope, location, ReduceConstraint{result});
return result;
}
std::vector<NotNull<Constraint>> borrowConstraints(const std::vector<ConstraintPtr>& constraints)
{
std::vector<NotNull<Constraint>> result;
result.reserve(constraints.size());
for (const auto& c : constraints)
result.emplace_back(c.get());
return result;
}
} // namespace Luau