mirror of
https://github.com/luau-lang/luau.git
synced 2024-11-15 14:25:44 +08:00
97965c7c0a
* `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
823 lines
25 KiB
C++
823 lines
25 KiB
C++
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
#include "Luau/TypeInfer.h"
|
|
|
|
#include "Fixture.h"
|
|
|
|
#include "doctest.h"
|
|
|
|
#include <algorithm>
|
|
|
|
using namespace Luau;
|
|
|
|
LUAU_FASTFLAG(LuauTypeMismatchInvarianceInError)
|
|
|
|
TEST_SUITE_BEGIN("ProvisionalTests");
|
|
|
|
// These tests check for behavior that differs from the final behavior we'd
|
|
// like to have. They serve to document the current state of the typechecker.
|
|
// When making future improvements, its very likely these tests will break and
|
|
// will need to be replaced.
|
|
|
|
/*
|
|
* This test falls into a sort of "do as I say" pit of consequences:
|
|
* Technically, the type of the type() function is <T>(T) -> string
|
|
*
|
|
* We thus infer that the argument to f is a free type.
|
|
* While we can still learn something about this argument, we can't seem to infer a union for it.
|
|
*
|
|
* Is this good? Maybe not, but I'm not sure what else we should do.
|
|
*/
|
|
TEST_CASE_FIXTURE(Fixture, "typeguard_inference_incomplete")
|
|
{
|
|
const std::string code = R"(
|
|
function f(a)
|
|
if type(a) == "boolean" then
|
|
local a1 = a
|
|
elseif a.fn() then
|
|
local a2 = a
|
|
end
|
|
end
|
|
)";
|
|
|
|
const std::string expected = R"(
|
|
function f(a:{fn:()->(a,b...)}): ()
|
|
if type(a) == 'boolean'then
|
|
local a1:boolean=a
|
|
elseif a.fn()then
|
|
local a2:{fn:()->(a,b...)}=a
|
|
end
|
|
end
|
|
)";
|
|
|
|
CHECK_EQ(expected, decorateWithTypes(code));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "luau-polyfill.Array.filter")
|
|
{
|
|
// This test exercises the fact that we should reduce sealed/unsealed/free tables
|
|
// res is a unsealed table with type {((T & ~nil)?) & any}
|
|
// Because we do not reduce it fully, we cannot unify it with `Array<T> = { [number] : T}
|
|
// TLDR; reduction needs to reduce the indexer on res so it unifies with Array<T>
|
|
CheckResult result = check(R"(
|
|
--!strict
|
|
-- Implements Javascript's `Array.prototype.filter` as defined below
|
|
-- https://developer.cmozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
|
|
type Array<T> = { [number]: T }
|
|
type callbackFn<T> = (element: T, index: number, array: Array<T>) -> boolean
|
|
type callbackFnWithThisArg<T, U> = (thisArg: U, element: T, index: number, array: Array<T>) -> boolean
|
|
type Object = { [string]: any }
|
|
return function<T, U>(t: Array<T>, callback: callbackFn<T> | callbackFnWithThisArg<T, U>, thisArg: U?): Array<T>
|
|
|
|
local len = #t
|
|
local res = {}
|
|
if thisArg == nil then
|
|
for i = 1, len do
|
|
local kValue = t[i]
|
|
if kValue ~= nil then
|
|
if (callback :: callbackFn<T>)(kValue, i, t) then
|
|
res[i] = kValue
|
|
end
|
|
end
|
|
end
|
|
else
|
|
end
|
|
|
|
return res
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "xpcall_returns_what_f_returns")
|
|
{
|
|
const std::string code = R"(
|
|
local a, b, c = xpcall(function() return 1, "foo" end, function() return "foo", 1 end)
|
|
)";
|
|
|
|
const std::string expected = R"(
|
|
local a:boolean,b:number,c:string=xpcall(function(): (number,string)return 1,'foo'end,function(): (string,number)return'foo',1 end)
|
|
)";
|
|
|
|
CheckResult result = check(code);
|
|
|
|
CHECK("boolean" == toString(requireType("a")));
|
|
CHECK("number" == toString(requireType("b")));
|
|
CHECK("string" == toString(requireType("c")));
|
|
|
|
CHECK(expected == decorateWithTypes(code));
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
}
|
|
|
|
// We had a bug where if you have two type packs that looks like:
|
|
// { x, y }, ...
|
|
// { x }, ...
|
|
// It would infinitely grow the type pack because one WeirdIter is trying to catch up, but can't.
|
|
// However, the following snippet is supposed to generate an OccursCheckFailed, but it doesn't.
|
|
TEST_CASE_FIXTURE(Fixture, "weirditer_should_not_loop_forever")
|
|
{
|
|
// this flag is intentionally here doing nothing to demonstrate that we exit early via case detection
|
|
ScopedFastInt sfis{"LuauTypeInferTypePackLoopLimit", 50};
|
|
|
|
CheckResult result = check(R"(
|
|
local function toVertexList(vertices, x, y, ...)
|
|
if not (x and y) then return vertices end -- no more arguments
|
|
vertices[#vertices + 1] = {x = x, y = y} -- set vertex
|
|
return toVertexList(vertices, ...) -- recurse
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
}
|
|
|
|
// This should also generate an OccursCheckFailed error too, like the above toVertexList snippet.
|
|
// at least up until we can get Luau to recognize this code as a valid function that iterates over a list of values in the pack.
|
|
TEST_CASE_FIXTURE(Fixture, "it_should_be_agnostic_of_actual_size")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function f(x, y, ...)
|
|
if not y then return x end
|
|
return f(x, ...)
|
|
end
|
|
|
|
f(3, 2, 1, 0)
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
}
|
|
|
|
// Ideally setmetatable's second argument would be an optional free table.
|
|
// For now, infer it as just a free table.
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "setmetatable_constrains_free_type_into_free_table")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local a = {}
|
|
local b
|
|
setmetatable(a, b)
|
|
b = 1
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
|
|
REQUIRE(tm);
|
|
CHECK_EQ("{- -}", toString(tm->wantedType));
|
|
CHECK_EQ("number", toString(tm->givenType));
|
|
}
|
|
|
|
// Luau currently doesn't yet know how to allow assignments when the binding was refined.
|
|
TEST_CASE_FIXTURE(Fixture, "while_body_are_also_refined")
|
|
{
|
|
CheckResult result = check(R"(
|
|
type Node<T> = { value: T, child: Node<T>? }
|
|
|
|
local function visitor<T>(node: Node<T>, f: (T) -> ())
|
|
local current = node
|
|
|
|
while current do
|
|
f(current.value)
|
|
current = current.child -- TODO: Can't work just yet. It thinks 'current' can never be nil. :(
|
|
end
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
CHECK_EQ("Type 'Node<T>?' could not be converted into 'Node<T>'", toString(result.errors[0]));
|
|
}
|
|
|
|
// Originally from TypeInfer.test.cpp.
|
|
// I dont think type checking the metamethod at every site of == is the correct thing to do.
|
|
// We should be type checking the metamethod at the call site of setmetatable.
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "error_on_eq_metamethod_returning_a_type_other_than_boolean")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local tab = {a = 1}
|
|
setmetatable(tab, {__eq = function(a, b): number
|
|
return 1
|
|
end})
|
|
local tab2 = tab
|
|
|
|
local a = tab2 == tab
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
GenericError* ge = get<GenericError>(result.errors[0]);
|
|
REQUIRE(ge);
|
|
CHECK_EQ("Metamethod '__eq' must return type 'boolean'", ge->message);
|
|
}
|
|
|
|
// Belongs in TypeInfer.refinements.test.cpp.
|
|
// We need refine both operands as `never` in the `==` branch.
|
|
TEST_CASE_FIXTURE(Fixture, "lvalue_equals_another_lvalue_with_no_overlap")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function f(a: string, b: boolean?)
|
|
if a == b then
|
|
local foo, bar = a, b
|
|
else
|
|
local foo, bar = a, b
|
|
end
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
CHECK_EQ(toString(requireTypeAtPosition({3, 33})), "string"); // a == b
|
|
CHECK_EQ(toString(requireTypeAtPosition({3, 36})), "boolean?"); // a == b
|
|
|
|
CHECK_EQ(toString(requireTypeAtPosition({5, 33})), "string"); // a ~= b
|
|
CHECK_EQ(toString(requireTypeAtPosition({5, 36})), "boolean?"); // a ~= b
|
|
}
|
|
|
|
// Also belongs in TypeInfer.refinements.test.cpp.
|
|
// Just needs to fully support equality refinement. Which is annoying without type states.
|
|
TEST_CASE_FIXTURE(Fixture, "discriminate_from_x_not_equal_to_nil")
|
|
{
|
|
CheckResult result = check(R"(
|
|
type T = {x: string, y: number} | {x: nil, y: nil}
|
|
|
|
local function f(t: T)
|
|
if t.x ~= nil then
|
|
local foo = t
|
|
else
|
|
local bar = t
|
|
end
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
|
|
CHECK_EQ("{| x: string, y: number |}", toString(requireTypeAtPosition({5, 28})));
|
|
|
|
// Should be {| x: nil, y: nil |}
|
|
CHECK_EQ("{| x: nil, y: nil |} | {| x: string, y: number |}", toString(requireTypeAtPosition({7, 28})));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "bail_early_if_unification_is_too_complicated" * doctest::timeout(0.5))
|
|
{
|
|
ScopedFastInt sffi{"LuauTarjanChildLimit", 1};
|
|
ScopedFastInt sffi2{"LuauTypeInferIterationLimit", 1};
|
|
|
|
CheckResult result = check(R"LUA(
|
|
local Result
|
|
Result = setmetatable({}, {})
|
|
Result.__index = Result
|
|
function Result.new(okValue)
|
|
local self = setmetatable({}, Result)
|
|
self:constructor(okValue)
|
|
return self
|
|
end
|
|
function Result:constructor(okValue)
|
|
self.okValue = okValue
|
|
end
|
|
function Result:ok(val) return Result.new(val) end
|
|
function Result:a(p0, p1, p2, p3, p4) return Result.new((self.okValue)) or p0 or p1 or p2 or p3 or p4 end
|
|
function Result:b(p0, p1, p2, p3, p4) return Result:ok((self.okValue)) or p0 or p1 or p2 or p3 or p4 end
|
|
function Result:c(p0, p1, p2, p3, p4) return Result:ok((self.okValue)) or p0 or p1 or p2 or p3 or p4 end
|
|
function Result:transpose(a)
|
|
return a and self.okValue:z(function(some)
|
|
return Result:ok(some)
|
|
end) or Result:ok(self.okValue)
|
|
end
|
|
)LUA");
|
|
|
|
auto it = std::find_if(result.errors.begin(), result.errors.end(), [](TypeError& a) {
|
|
return nullptr != get<UnificationTooComplex>(a);
|
|
});
|
|
if (it == result.errors.end())
|
|
{
|
|
dumpErrors(result);
|
|
FAIL("Expected a UnificationTooComplex error");
|
|
}
|
|
}
|
|
|
|
// FIXME: Move this test to another source file when removing FFlag::LuauLowerBoundsCalculation
|
|
TEST_CASE_FIXTURE(Fixture, "do_not_ice_when_trying_to_pick_first_of_generic_type_pack")
|
|
{
|
|
// In-place quantification causes these types to have the wrong types but only because of nasty interaction with prototyping.
|
|
// The type of f is initially () -> free1...
|
|
// Then the prototype iterator advances, and checks the function expression assigned to g, which has the type () -> free2...
|
|
// In the body it calls f and returns what f() returns. This binds free2... with free1..., causing f and g to have same types.
|
|
// We then quantify g, leaving it with the final type <a...>() -> a...
|
|
// Because free1... and free2... were bound, in combination with in-place quantification, f's return type was also turned into a...
|
|
// Then the check iterator catches up, and checks the body of f, and attempts to quantify it too.
|
|
// Alas, one of the requirements for quantification is that a type must contain free types. () -> a... has no free types.
|
|
// Thus the quantification for f was no-op, which explains why f does not have any type parameters.
|
|
// Calling f() will attempt to instantiate the function type, which turns generics in type binders into to free types.
|
|
// However, instantiations only converts generics contained within the type binders of a function, so instantiation was also no-op.
|
|
// Which means that calling f() simply returned a... rather than an instantiation of it. And since the call site was not in tail position,
|
|
// picking first element in a... triggers an ICE because calls returning generic packs are unexpected.
|
|
CheckResult result = check(R"(
|
|
local function f() end
|
|
|
|
local g = function() return f() end
|
|
|
|
local x = (f()) -- should error: no return values to assign from the call to f
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
|
|
// f and g should have the type () -> ()
|
|
CHECK_EQ("() -> (a...)", toString(requireType("f")));
|
|
CHECK_EQ("<a...>() -> (a...)", toString(requireType("g")));
|
|
CHECK_EQ("any", toString(requireType("x"))); // any is returned instead of ICE for now
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(Fixture, "specialization_binds_with_prototypes_too_early")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function id(x) return x end
|
|
local n2n: (number) -> number = id
|
|
local s2s: (string) -> string = id
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERRORS(result); // Should not have any errors.
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(Fixture, "weird_fail_to_unify_type_pack")
|
|
{
|
|
ScopedFastFlag sff[] = {
|
|
// I'm not sure why this is broken without DCR, but it seems to be fixed
|
|
// when DCR is enabled.
|
|
{"DebugLuauDeferredConstraintResolution", false},
|
|
};
|
|
|
|
CheckResult result = check(R"(
|
|
local function f() return end
|
|
local g = function() return f() end
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERRORS(result); // Should not have any errors.
|
|
}
|
|
|
|
// Belongs in TypeInfer.builtins.test.cpp.
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "pcall_returns_at_least_two_value_but_function_returns_nothing")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function f(): () end
|
|
local ok, res = pcall(f)
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
CHECK_EQ("Function only returns 1 value, but 2 are required here", toString(result.errors[0]));
|
|
// LUAU_REQUIRE_NO_ERRORS(result);
|
|
// CHECK_EQ("boolean", toString(requireType("ok")));
|
|
// CHECK_EQ("any", toString(requireType("res")));
|
|
}
|
|
|
|
// Belongs in TypeInfer.builtins.test.cpp.
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "choose_the_right_overload_for_pcall")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function f(): number
|
|
if math.random() > 0.5 then
|
|
return 5
|
|
else
|
|
error("something")
|
|
end
|
|
end
|
|
|
|
local ok, res = pcall(f)
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
CHECK_EQ("boolean", toString(requireType("ok")));
|
|
CHECK_EQ("number", toString(requireType("res")));
|
|
// CHECK_EQ("any", toString(requireType("res")));
|
|
}
|
|
|
|
// Belongs in TypeInfer.builtins.test.cpp.
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "function_returns_many_things_but_first_of_it_is_forgotten")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function f(): (number, string, boolean)
|
|
if math.random() > 0.5 then
|
|
return 5, "hello", true
|
|
else
|
|
error("something")
|
|
end
|
|
end
|
|
|
|
local ok, res, s, b = pcall(f)
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
CHECK_EQ("boolean", toString(requireType("ok")));
|
|
CHECK_EQ("number", toString(requireType("res")));
|
|
// CHECK_EQ("any", toString(requireType("res")));
|
|
CHECK_EQ("string", toString(requireType("s")));
|
|
CHECK_EQ("boolean", toString(requireType("b")));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(Fixture, "free_is_not_bound_to_any")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function foo(f: (any) -> (), x)
|
|
f(x)
|
|
end
|
|
)");
|
|
|
|
CHECK_EQ("((any) -> (), any) -> ()", toString(requireType("foo")));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "greedy_inference_with_shared_self_triggers_function_with_no_returns")
|
|
{
|
|
ScopedFastFlag sff{"DebugLuauSharedSelf", true};
|
|
|
|
CheckResult result = check(R"(
|
|
local T = {}
|
|
T.__index = T
|
|
|
|
function T.new()
|
|
local self = setmetatable({}, T)
|
|
return self:ctor() or self
|
|
end
|
|
|
|
function T:ctor()
|
|
-- oops, no return!
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
CHECK_EQ("Not all codepaths in this function return 'self, a...'.", toString(result.errors[0]));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(Fixture, "dcr_can_partially_dispatch_a_constraint")
|
|
{
|
|
ScopedFastFlag sff[] = {
|
|
{"DebugLuauDeferredConstraintResolution", true},
|
|
};
|
|
|
|
CheckResult result = check(R"(
|
|
local function hasDivisors(value: number)
|
|
end
|
|
|
|
function prime_iter(state, index)
|
|
hasDivisors(index)
|
|
index += 1
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
|
|
// Solving this requires recognizing that we can't dispatch a constraint
|
|
// like this without doing further work:
|
|
//
|
|
// (*blocked*) -> () <: (number) -> (b...)
|
|
//
|
|
// We solve this by searching both types for BlockedTypes and block the
|
|
// constraint on any we find. It also gets the job done, but I'm worried
|
|
// about the efficiency of doing so many deep type traversals and it may
|
|
// make us more prone to getting stuck on constraint cycles.
|
|
//
|
|
// If this doesn't pan out, a possible solution is to go further down the
|
|
// path of supporting partial constraint dispatch. The way it would work is
|
|
// that we'd dispatch the above constraint by binding b... to (), but we
|
|
// would append a new constraint number <: *blocked* to the constraint set
|
|
// to be solved later. This should be faster and theoretically less prone
|
|
// to cyclic constraint dependencies.
|
|
CHECK("<a>(a, number) -> ()" == toString(requireType("prime_iter")));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "for_in_loop_with_zero_iterators")
|
|
{
|
|
ScopedFastFlag sff{"DebugLuauDeferredConstraintResolution", false};
|
|
|
|
CheckResult result = check(R"(
|
|
function no_iter() end
|
|
for key in no_iter() do end -- This should not be ok
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
}
|
|
|
|
// Ideally, we would not try to export a function type with generic types from incorrect scope
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "generic_type_leak_to_module_interface")
|
|
{
|
|
fileResolver.source["game/A"] = R"(
|
|
local wrapStrictTable
|
|
|
|
local metatable = {
|
|
__index = function(self, key)
|
|
local value = self.__tbl[key]
|
|
if type(value) == "table" then
|
|
-- unification of the free 'wrapStrictTable' with this function type causes generics of this function to leak out of scope
|
|
return wrapStrictTable(value, self.__name .. "." .. key)
|
|
end
|
|
return value
|
|
end,
|
|
}
|
|
|
|
return wrapStrictTable
|
|
)";
|
|
|
|
frontend.check("game/A");
|
|
|
|
fileResolver.source["game/B"] = R"(
|
|
local wrapStrictTable = require(game.A)
|
|
|
|
local Constants = {}
|
|
|
|
return wrapStrictTable(Constants, "Constants")
|
|
)";
|
|
|
|
frontend.check("game/B");
|
|
|
|
ModulePtr m = frontend.moduleResolver.getModule("game/B");
|
|
REQUIRE(m);
|
|
|
|
std::optional<TypeId> result = first(m->returnType);
|
|
REQUIRE(result);
|
|
if (FFlag::DebugLuauDeferredConstraintResolution)
|
|
CHECK_EQ("(any?) & ~table", toString(*result));
|
|
else
|
|
CHECK_MESSAGE(get<AnyType>(*result), *result);
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "generic_type_leak_to_module_interface_variadic")
|
|
{
|
|
fileResolver.source["game/A"] = R"(
|
|
local wrapStrictTable
|
|
|
|
local metatable = {
|
|
__index = function<T>(self, key, ...: T)
|
|
local value = self.__tbl[key]
|
|
if type(value) == "table" then
|
|
-- unification of the free 'wrapStrictTable' with this function type causes generics of this function to leak out of scope
|
|
return wrapStrictTable(value, self.__name .. "." .. key)
|
|
end
|
|
return ...
|
|
end,
|
|
}
|
|
|
|
return wrapStrictTable
|
|
)";
|
|
|
|
frontend.check("game/A");
|
|
|
|
fileResolver.source["game/B"] = R"(
|
|
local wrapStrictTable = require(game.A)
|
|
|
|
local Constants = {}
|
|
|
|
return wrapStrictTable(Constants, "Constants")
|
|
)";
|
|
|
|
frontend.check("game/B");
|
|
|
|
ModulePtr m = frontend.moduleResolver.getModule("game/B");
|
|
REQUIRE(m);
|
|
|
|
std::optional<TypeId> result = first(m->returnType);
|
|
REQUIRE(result);
|
|
CHECK(get<AnyType>(*result));
|
|
}
|
|
|
|
namespace
|
|
{
|
|
struct IsSubtypeFixture : Fixture
|
|
{
|
|
bool isSubtype(TypeId a, TypeId b)
|
|
{
|
|
ModulePtr module = getMainModule();
|
|
REQUIRE(module);
|
|
|
|
if (!module->hasModuleScope())
|
|
FAIL("isSubtype: module scope data is not available");
|
|
|
|
return ::Luau::isSubtype(a, b, NotNull{module->getModuleScope().get()}, builtinTypes, ice);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
TEST_CASE_FIXTURE(IsSubtypeFixture, "intersection_of_functions_of_different_arities")
|
|
{
|
|
check(R"(
|
|
type A = (any) -> ()
|
|
type B = (any, any) -> ()
|
|
type T = A & B
|
|
|
|
local a: A
|
|
local b: B
|
|
local t: T
|
|
)");
|
|
|
|
[[maybe_unused]] TypeId a = requireType("a");
|
|
[[maybe_unused]] TypeId b = requireType("b");
|
|
|
|
// CHECK(!isSubtype(a, b)); // !!
|
|
// CHECK(!isSubtype(b, a));
|
|
|
|
CHECK("((any) -> ()) & ((any, any) -> ())" == toString(requireType("t")));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(IsSubtypeFixture, "functions_with_mismatching_arity")
|
|
{
|
|
check(R"(
|
|
local a: (number) -> ()
|
|
local b: () -> ()
|
|
|
|
local c: () -> number
|
|
)");
|
|
|
|
TypeId a = requireType("a");
|
|
TypeId b = requireType("b");
|
|
TypeId c = requireType("c");
|
|
|
|
// CHECK(!isSubtype(b, a));
|
|
// CHECK(!isSubtype(c, a));
|
|
|
|
CHECK(!isSubtype(a, b));
|
|
// CHECK(!isSubtype(c, b));
|
|
|
|
CHECK(!isSubtype(a, c));
|
|
CHECK(!isSubtype(b, c));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(IsSubtypeFixture, "functions_with_mismatching_arity_but_optional_parameters")
|
|
{
|
|
/*
|
|
* (T0..TN) <: (T0..TN, A?)
|
|
* (T0..TN) <: (T0..TN, any)
|
|
* (T0..TN, A?) </: (T0..TN) We don't technically need to spell this out, but it's quite important.
|
|
* T <: T
|
|
* if A <: B and B <: C then A <: C
|
|
* T -> R <: U -> S if U <: T and R <: S
|
|
* A | B <: T if A <: T and B <: T
|
|
* T <: A | B if T <: A or T <: B
|
|
*/
|
|
check(R"(
|
|
local a: (number?) -> ()
|
|
local b: (number) -> ()
|
|
local c: (number, number?) -> ()
|
|
)");
|
|
|
|
TypeId a = requireType("a");
|
|
TypeId b = requireType("b");
|
|
TypeId c = requireType("c");
|
|
|
|
/*
|
|
* (number) -> () </: (number?) -> ()
|
|
* because number? </: number (because number <: number, but nil </: number)
|
|
*/
|
|
CHECK(!isSubtype(b, a));
|
|
|
|
/*
|
|
* (number, number?) </: (number?) -> ()
|
|
* because number? </: number (as above)
|
|
*/
|
|
CHECK(!isSubtype(c, a));
|
|
|
|
/*
|
|
* (number?) -> () <: (number) -> ()
|
|
* because number <: number? (because number <: number)
|
|
*/
|
|
CHECK(isSubtype(a, b));
|
|
|
|
/*
|
|
* (number, number?) -> () <: (number) -> (number)
|
|
* The packs have inequal lengths, but (number) <: (number, number?)
|
|
* and number <: number
|
|
*/
|
|
// CHECK(!isSubtype(c, b));
|
|
|
|
/*
|
|
* (number?) -> () </: (number, number?) -> ()
|
|
* because (number, number?) </: (number)
|
|
*/
|
|
// CHECK(!isSubtype(a, c));
|
|
|
|
/*
|
|
* (number) -> () </: (number, number?) -> ()
|
|
* because (number, number?) </: (number)
|
|
*/
|
|
// CHECK(!isSubtype(b, c));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(IsSubtypeFixture, "functions_with_mismatching_arity_but_any_is_an_optional_param")
|
|
{
|
|
check(R"(
|
|
local a: (number?) -> ()
|
|
local b: (number) -> ()
|
|
local c: (number, any) -> ()
|
|
)");
|
|
|
|
TypeId a = requireType("a");
|
|
TypeId b = requireType("b");
|
|
TypeId c = requireType("c");
|
|
|
|
/*
|
|
* (number) -> () </: (number?) -> ()
|
|
* because number? </: number (because number <: number, but nil </: number)
|
|
*/
|
|
CHECK(!isSubtype(b, a));
|
|
|
|
/*
|
|
* (number, any) </: (number?) -> ()
|
|
* because number? </: number (as above)
|
|
*/
|
|
CHECK(!isSubtype(c, a));
|
|
|
|
/*
|
|
* (number?) -> () <: (number) -> ()
|
|
* because number <: number? (because number <: number)
|
|
*/
|
|
CHECK(isSubtype(a, b));
|
|
|
|
/*
|
|
* (number, any) -> () </: (number) -> (number)
|
|
* The packs have inequal lengths
|
|
*/
|
|
// CHECK(!isSubtype(c, b));
|
|
|
|
/*
|
|
* (number?) -> () </: (number, any) -> ()
|
|
* The packs have inequal lengths
|
|
*/
|
|
// CHECK(!isSubtype(a, c));
|
|
|
|
/*
|
|
* (number) -> () </: (number, any) -> ()
|
|
* The packs have inequal lengths
|
|
*/
|
|
// CHECK(!isSubtype(b, c));
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(Fixture, "assign_table_with_refined_property_with_a_similar_type_is_illegal")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local t: {x: number?} = {x = nil}
|
|
|
|
if t.x then
|
|
local u: {x: number} = t
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
if (FFlag::LuauTypeMismatchInvarianceInError)
|
|
{
|
|
CHECK_EQ(R"(Type '{| x: number? |}' could not be converted into '{| x: number |}'
|
|
caused by:
|
|
Property 'x' is not compatible. Type 'number?' could not be converted into 'number' in an invariant context)",
|
|
toString(result.errors[0]));
|
|
}
|
|
else
|
|
{
|
|
CHECK_EQ(R"(Type '{| x: number? |}' could not be converted into '{| x: number |}'
|
|
caused by:
|
|
Property 'x' is not compatible. Type 'number?' could not be converted into 'number')",
|
|
toString(result.errors[0]));
|
|
}
|
|
}
|
|
|
|
TEST_CASE_FIXTURE(BuiltinsFixture, "table_insert_with_a_singleton_argument")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function foo(t, x)
|
|
if x == "hi" or x == "bye" then
|
|
table.insert(t, x)
|
|
end
|
|
|
|
return t
|
|
end
|
|
|
|
local t = foo({}, "hi")
|
|
table.insert(t, "totally_unrelated_type" :: "totally_unrelated_type")
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
|
|
if (FFlag::DebugLuauDeferredConstraintResolution)
|
|
CHECK_EQ("{string}", toString(requireType("t")));
|
|
else
|
|
{
|
|
// We'd really like for this to be {string}
|
|
CHECK_EQ("{string | string}", toString(requireType("t")));
|
|
}
|
|
}
|
|
|
|
// We really should be warning on this. We have no guarantee that T has any properties.
|
|
TEST_CASE_FIXTURE(Fixture, "lookup_prop_of_intersection_containing_unions_of_tables_that_have_the_prop")
|
|
{
|
|
CheckResult result = check(R"(
|
|
local function mergeOptions<T>(options: T & ({variable: string} | {variable: number}))
|
|
return options.variable
|
|
end
|
|
)");
|
|
|
|
LUAU_REQUIRE_NO_ERRORS(result);
|
|
|
|
// LUAU_REQUIRE_ERROR_COUNT(1, result);
|
|
|
|
// const UnknownProperty* unknownProp = get<UnknownProperty>(result.errors[0]);
|
|
// REQUIRE(unknownProp);
|
|
|
|
// CHECK("variable" == unknownProp->key);
|
|
}
|
|
|
|
TEST_SUITE_END();
|