luau/prototyping/Properties/Equality.agda
2022-02-18 16:47:04 -06:00

24 lines
735 B
Agda

module Properties.Equality where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Contradiction using (¬)
sym : {A : Set} {a b : A} (a b) (b a)
sym refl = refl
trans : {A : Set} {a b c : A} (a b) (b c) (a c)
trans refl refl = refl
cong : {A B : Set} {a b : A} (f : A B) (a b) (f a f b)
cong f refl = refl
subst₁ : {A : Set} {a b : A} (F : A Set) (a b) (F a) (F b)
subst₁ F refl x = x
subst₂ : {A B : Set} {a b : A} {c d : B} (F : A B Set) (a b) (c d) (F a c) (F b d)
subst₂ F refl refl x = x
_≢_ : {A : Set} A A Set
(a b) = ¬(a b)