luau/prototyping/Luau/OpSem.agda
Lily Brown 0bd21762ae
Prototype bools and relational operators (#387)
Prototypes booleans and relational operators.

As part of this I removed `FFI/Data/Bool.agda`, because it was getting in the way - we already use `Agda.Builtin.Bool` instead for other cases.
2022-02-24 11:17:46 -08:00

164 lines
5.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Luau.OpSem where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality)
open import Agda.Builtin.Bool using (Bool; true; false)
open import Utility.Bool using (not; _or_; _and_)
open import Agda.Builtin.Nat using (_==_)
open import FFI.Data.Maybe using (just)
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ≡; ≅; ≤; ≥; number)
open import Luau.Value using (addr; val; number; Value; bool)
open import Luau.RuntimeType using (RuntimeType; valueType)
evalNumOp : Float BinaryOperator Float Value
evalNumOp x + y = number (primFloatPlus x y)
evalNumOp x - y = number (primFloatMinus x y)
evalNumOp x * y = number (primFloatTimes x y)
evalNumOp x / y = number (primFloatDiv x y)
evalNumOp x < y = bool (primFloatLess x y)
evalNumOp x > y = bool (primFloatLess y x)
evalNumOp x y = bool (primFloatEquality x y)
evalNumOp x y = bool (primFloatInequality x y)
evalNumOp x y = bool ((primFloatLess x y) or (primFloatEquality x y))
evalNumOp x y = bool ((primFloatLess y x) or (primFloatEquality x y))
evalEqOp : Value Value Value
evalEqOp Value.nil Value.nil = bool true
evalEqOp (addr x) (addr y) = bool (x == y)
evalEqOp (number x) (number y) = bool (primFloatEquality x y)
evalEqOp (bool true) (bool y) = bool y
evalEqOp (bool false) (bool y) = bool (not y)
evalEqOp _ _ = bool false
evalNeqOp : Value Value Value
evalNeqOp Value.nil Value.nil = bool false
evalNeqOp (addr x) (addr y) = bool (not (x == y))
evalNeqOp (number x) (number y) = bool (primFloatInequality x y)
evalNeqOp (bool true) (bool y) = bool (not y)
evalNeqOp (bool false) (bool y) = bool y
evalNeqOp _ _ = bool true
coerceToBool : Value Bool
coerceToBool Value.nil = false
coerceToBool (addr x) = true
coerceToBool (number x) = true
coerceToBool (bool x) = x
data _⊢_⟶ᴮ_⊣_ {a} : Heap a Block a Block a Heap a Set
data _⊢_⟶ᴱ_⊣_ {a} : Heap a Expr a Expr a Heap a Set
data _⊢_⟶ᴱ_⊣_ where
nil : {H}
-------------------
H nil ⟶ᴱ nil H
function : {H H a F B}
H H a (function F is B end)
-------------------------------------------
H (function F is B end) ⟶ᴱ (addr a) H
app₁ : {H H M M N}
H M ⟶ᴱ M H
-----------------------------
H (M $ N) ⟶ᴱ (M $ N) H
app₂ : {H H V N N}
H N ⟶ᴱ N H
-----------------------------
H (val V $ N) ⟶ᴱ (val V $ N) H
beta : {H a F B V}
H [ a ] just(function F is B end)
-----------------------------------------------------------------------------
H (addr a $ val V) ⟶ᴱ (block (fun F) is (B [ V / name(arg F) ]ᴮ) end) H
block : {H H B B b}
H B ⟶ᴮ B H
----------------------------------------------------
H (block b is B end) ⟶ᴱ (block b is B end) H
return : {H V B b}
--------------------------------------------------------
H (block b is return (val V) B end) ⟶ᴱ (val V) H
done : {H b}
---------------------------------
H (block b is done end) ⟶ᴱ nil H
binOpEquality :
{H x y}
---------------------------------------------------------------------------
H (binexp (val x) BinaryOperator.≡ (val y)) ⟶ᴱ (val (evalEqOp x y)) H
binOpInequality :
{H x y}
----------------------------------------------------------------------------
H (binexp (val x) BinaryOperator.≅ (val y)) ⟶ᴱ (val (evalNeqOp x y)) H
binOpNumbers :
{H x op y}
-----------------------------------------------------------------------
H (binexp (number x) op (number y)) ⟶ᴱ (val (evalNumOp x op y)) H
binOp₁ :
{H H x x op y}
H x ⟶ᴱ x H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
binOp₂ :
{H H x op y y}
H y ⟶ᴱ y H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
data _⊢_⟶ᴮ_⊣_ where
local : {H H x M M B}
H M ⟶ᴱ M H
-------------------------------------------------
H (local x M B) ⟶ᴮ (local x M B) H
subst : {H x v B}
------------------------------------------------------
H (local x val v B) ⟶ᴮ (B [ v / name x ]ᴮ) H
function : {H H a F B C}
H H a (function F is C end)
--------------------------------------------------------------
H (function F is C end B) ⟶ᴮ (B [ addr a / fun F ]ᴮ) H
return : {H H M M B}
H M ⟶ᴱ M H
--------------------------------------------
H (return M B) ⟶ᴮ (return M B) H
data _⊢_⟶*_⊣_ {a} : Heap a Block a Block a Heap a Set where
refl : {H B}
----------------
H B ⟶* B H
step : {H H H″ B B B″}
H B ⟶ᴮ B H
H B ⟶* B″ H″
------------------
H B ⟶* B″ H″