// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #pragma once #include "Luau/Ast.h" #include "Luau/Constraint.h" #include "Luau/ControlFlow.h" #include "Luau/DataFlowGraph.h" #include "Luau/Module.h" #include "Luau/ModuleResolver.h" #include "Luau/NotNull.h" #include "Luau/Refinement.h" #include "Luau/Symbol.h" #include "Luau/Type.h" #include "Luau/Variant.h" #include #include #include namespace Luau { struct Scope; using ScopePtr = std::shared_ptr; struct DcrLogger; struct Inference { TypeId ty = nullptr; RefinementId refinement = nullptr; Inference() = default; explicit Inference(TypeId ty, RefinementId refinement = nullptr) : ty(ty) , refinement(refinement) { } }; struct InferencePack { TypePackId tp = nullptr; std::vector refinements; InferencePack() = default; explicit InferencePack(TypePackId tp, const std::vector& refinements = {}) : tp(tp) , refinements(refinements) { } }; struct ConstraintGraphBuilder { // A list of all the scopes in the module. This vector holds ownership of the // scope pointers; the scopes themselves borrow pointers to other scopes to // define the scope hierarchy. std::vector> scopes; ModulePtr module; NotNull builtinTypes; const NotNull arena; // The root scope of the module we're generating constraints for. // This is null when the CGB is initially constructed. Scope* rootScope; // Constraints that go straight to the solver. std::vector constraints; // Constraints that do not go to the solver right away. Other constraints // will enqueue them during solving. std::vector unqueuedConstraints; // The private scope of type aliases for which the type parameters belong to. DenseHashMap astTypeAliasDefiningScopes{nullptr}; NotNull dfg; RefinementArena refinementArena; int recursionCount = 0; // It is pretty uncommon for constraint generation to itself produce errors, but it can happen. std::vector errors; // Needed to resolve modules to make 'require' import types properly. NotNull moduleResolver; // Occasionally constraint generation needs to produce an ICE. const NotNull ice; ScopePtr globalScope; DcrLogger* logger; ConstraintGraphBuilder(ModulePtr module, TypeArena* arena, NotNull moduleResolver, NotNull builtinTypes, NotNull ice, const ScopePtr& globalScope, DcrLogger* logger, NotNull dfg); /** * Fabricates a new free type belonging to a given scope. * @param scope the scope the free type belongs to. */ TypeId freshType(const ScopePtr& scope); /** * Fabricates a new free type pack belonging to a given scope. * @param scope the scope the free type pack belongs to. */ TypePackId freshTypePack(const ScopePtr& scope); /** * Fabricates a scope that is a child of another scope. * @param node the lexical node that the scope belongs to. * @param parent the parent scope of the new scope. Must not be null. */ ScopePtr childScope(AstNode* node, const ScopePtr& parent); /** * Adds a new constraint with no dependencies to a given scope. * @param scope the scope to add the constraint to. * @param cv the constraint variant to add. * @return the pointer to the inserted constraint */ NotNull addConstraint(const ScopePtr& scope, const Location& location, ConstraintV cv); /** * Adds a constraint to a given scope. * @param scope the scope to add the constraint to. Must not be null. * @param c the constraint to add. * @return the pointer to the inserted constraint */ NotNull addConstraint(const ScopePtr& scope, std::unique_ptr c); void applyRefinements(const ScopePtr& scope, Location location, RefinementId refinement); /** * The entry point to the ConstraintGraphBuilder. This will construct a set * of scopes, constraints, and free types that can be solved later. * @param block the root block to generate constraints for. */ void visit(AstStatBlock* block); ControlFlow visitBlockWithoutChildScope(const ScopePtr& scope, AstStatBlock* block); ControlFlow visit(const ScopePtr& scope, AstStat* stat); ControlFlow visit(const ScopePtr& scope, AstStatBlock* block); ControlFlow visit(const ScopePtr& scope, AstStatLocal* local); ControlFlow visit(const ScopePtr& scope, AstStatFor* for_); ControlFlow visit(const ScopePtr& scope, AstStatForIn* forIn); ControlFlow visit(const ScopePtr& scope, AstStatWhile* while_); ControlFlow visit(const ScopePtr& scope, AstStatRepeat* repeat); ControlFlow visit(const ScopePtr& scope, AstStatLocalFunction* function); ControlFlow visit(const ScopePtr& scope, AstStatFunction* function); ControlFlow visit(const ScopePtr& scope, AstStatReturn* ret); ControlFlow visit(const ScopePtr& scope, AstStatAssign* assign); ControlFlow visit(const ScopePtr& scope, AstStatCompoundAssign* assign); ControlFlow visit(const ScopePtr& scope, AstStatIf* ifStatement); ControlFlow visit(const ScopePtr& scope, AstStatTypeAlias* alias); ControlFlow visit(const ScopePtr& scope, AstStatDeclareGlobal* declareGlobal); ControlFlow visit(const ScopePtr& scope, AstStatDeclareClass* declareClass); ControlFlow visit(const ScopePtr& scope, AstStatDeclareFunction* declareFunction); ControlFlow visit(const ScopePtr& scope, AstStatError* error); InferencePack checkPack(const ScopePtr& scope, AstArray exprs, const std::vector>& expectedTypes = {}); InferencePack checkPack(const ScopePtr& scope, AstExpr* expr, const std::vector>& expectedTypes = {}); InferencePack checkPack(const ScopePtr& scope, AstExprCall* call); /** * Checks an expression that is expected to evaluate to one type. * @param scope the scope the expression is contained within. * @param expr the expression to check. * @param expectedType the type of the expression that is expected from its * surrounding context. Used to implement bidirectional type checking. * @return the type of the expression. */ Inference check(const ScopePtr& scope, AstExpr* expr, std::optional expectedType = {}, bool forceSingleton = false); Inference check(const ScopePtr& scope, AstExprConstantString* string, std::optional expectedType, bool forceSingleton); Inference check(const ScopePtr& scope, AstExprConstantBool* bool_, std::optional expectedType, bool forceSingleton); Inference check(const ScopePtr& scope, AstExprLocal* local); Inference check(const ScopePtr& scope, AstExprGlobal* global); Inference check(const ScopePtr& scope, AstExprIndexName* indexName); Inference check(const ScopePtr& scope, AstExprIndexExpr* indexExpr); Inference check(const ScopePtr& scope, AstExprUnary* unary); Inference check(const ScopePtr& scope, AstExprBinary* binary, std::optional expectedType); Inference check(const ScopePtr& scope, AstExprIfElse* ifElse, std::optional expectedType); Inference check(const ScopePtr& scope, AstExprTypeAssertion* typeAssert); Inference check(const ScopePtr& scope, AstExprInterpString* interpString); Inference check(const ScopePtr& scope, AstExprTable* expr, std::optional expectedType); std::tuple checkBinary(const ScopePtr& scope, AstExprBinary* binary, std::optional expectedType); std::vector checkLValues(const ScopePtr& scope, AstArray exprs); TypeId checkLValue(const ScopePtr& scope, AstExpr* expr); struct FunctionSignature { // The type of the function. TypeId signature; // The scope that encompasses the function's signature. May be nullptr // if there was no need for a signature scope (the function has no // generics). ScopePtr signatureScope; // The scope that encompasses the function's body. Is a child scope of // signatureScope, if present. ScopePtr bodyScope; }; FunctionSignature checkFunctionSignature(const ScopePtr& parent, AstExprFunction* fn, std::optional expectedType = {}); /** * Checks the body of a function expression. * @param scope the interior scope of the body of the function. * @param fn the function expression to check. */ void checkFunctionBody(const ScopePtr& scope, AstExprFunction* fn); /** * Resolves a type from its AST annotation. * @param scope the scope that the type annotation appears within. * @param ty the AST annotation to resolve. * @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`. * @return the type of the AST annotation. **/ TypeId resolveType(const ScopePtr& scope, AstType* ty, bool inTypeArguments, bool replaceErrorWithFresh = false); /** * Resolves a type pack from its AST annotation. * @param scope the scope that the type annotation appears within. * @param tp the AST annotation to resolve. * @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`. * @return the type pack of the AST annotation. **/ TypePackId resolveTypePack(const ScopePtr& scope, AstTypePack* tp, bool inTypeArguments, bool replaceErrorWithFresh = false); /** * Resolves a type pack from its AST annotation. * @param scope the scope that the type annotation appears within. * @param list the AST annotation to resolve. * @param inTypeArguments whether we are resolving a type that's contained within type arguments, `<...>`. * @return the type pack of the AST annotation. **/ TypePackId resolveTypePack(const ScopePtr& scope, const AstTypeList& list, bool inTypeArguments, bool replaceErrorWithFresh = false); /** * Creates generic types given a list of AST definitions, resolving default * types as required. * @param scope the scope that the generics should belong to. * @param generics the AST generics to create types for. * @param useCache whether to use the generic type cache for the given * scope. * @param addTypes whether to add the types to the scope's * privateTypeBindings map. **/ std::vector> createGenerics( const ScopePtr& scope, AstArray generics, bool useCache = false, bool addTypes = true); /** * Creates generic type packs given a list of AST definitions, resolving * default type packs as required. * @param scope the scope that the generic packs should belong to. * @param generics the AST generics to create type packs for. * @param useCache whether to use the generic type pack cache for the given * scope. * @param addTypes whether to add the types to the scope's * privateTypePackBindings map. **/ std::vector> createGenericPacks( const ScopePtr& scope, AstArray packs, bool useCache = false, bool addTypes = true); Inference flattenPack(const ScopePtr& scope, Location location, InferencePack pack); void reportError(Location location, TypeErrorData err); void reportCodeTooComplex(Location location); /** Scan the program for global definitions. * * ConstraintGraphBuilder needs to differentiate between globals and accesses to undefined symbols. Doing this "for * real" in a general way is going to be pretty hard, so we are choosing not to tackle that yet. For now, we do an * initial scan of the AST and note what globals are defined. */ void prepopulateGlobalScope(const ScopePtr& globalScope, AstStatBlock* program); /** Given a function type annotation, return a vector describing the expected types of the calls to the function * For example, calling a function with annotation ((number) -> string & ((string) -> number)) * yields a vector of size 1, with value: [number | string] */ std::vector> getExpectedCallTypesForFunctionOverloads(const TypeId fnType); }; /** Borrow a vector of pointers from a vector of owning pointers to constraints. */ std::vector> borrowConstraints(const std::vector& constraints); } // namespace Luau