// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "Luau/Scope.h" #include "Luau/ToString.h" #include "Fixture.h" #include "ScopedFlags.h" #include "doctest.h" using namespace Luau; LUAU_FASTFLAG(LuauRecursiveTypeParameterRestriction); LUAU_FASTFLAG(LuauSolverV2); LUAU_FASTFLAG(LuauAttributeSyntax); LUAU_FASTFLAG(LuauUserDefinedTypeFunctions2) TEST_SUITE_BEGIN("ToString"); TEST_CASE_FIXTURE(Fixture, "primitive") { CheckResult result = check("local a = nil local b = 44 local c = 'lalala' local d = true"); LUAU_REQUIRE_NO_ERRORS(result); if (FFlag::LuauSolverV2) CHECK("nil" == toString(requireType("a"))); else { // A variable without an annotation and with a nil literal should infer as 'free', not 'nil' CHECK_NE("nil", toString(requireType("a"))); } CHECK_EQ("number", toString(requireType("b"))); CHECK_EQ("string", toString(requireType("c"))); CHECK_EQ("boolean", toString(requireType("d"))); } TEST_CASE_FIXTURE(Fixture, "bound_types") { CheckResult result = check("local a = 444 local b = a"); LUAU_REQUIRE_NO_ERRORS(result); CHECK_EQ("number", toString(requireType("b"))); } TEST_CASE_FIXTURE(Fixture, "free_types") { DOES_NOT_PASS_NEW_SOLVER_GUARD(); CheckResult result = check("local a"); LUAU_REQUIRE_NO_ERRORS(result); CHECK_EQ("a", toString(requireType("a"))); } TEST_CASE_FIXTURE(Fixture, "cyclic_table") { Type cyclicTable{TypeVariant(TableType())}; TableType* tableOne = getMutable(&cyclicTable); tableOne->props["self"] = {&cyclicTable}; if (FFlag::LuauSolverV2) CHECK_EQ("t1 where t1 = {| self: t1 |}", toString(&cyclicTable)); else CHECK_EQ("t1 where t1 = { self: t1 }", toString(&cyclicTable)); } TEST_CASE_FIXTURE(Fixture, "named_table") { Type table{TypeVariant(TableType())}; TableType* t = getMutable(&table); t->name = "TheTable"; CHECK_EQ("TheTable", toString(&table)); } TEST_CASE_FIXTURE(Fixture, "empty_table") { CheckResult result = check(R"( local a: {} )"); if (FFlag::LuauSolverV2) CHECK_EQ("{ }", toString(requireType("a"))); else CHECK_EQ("{| |}", toString(requireType("a"))); // Should stay the same with useLineBreaks enabled ToStringOptions opts; opts.useLineBreaks = true; if (FFlag::LuauSolverV2) CHECK_EQ("{ }", toString(requireType("a"), opts)); else CHECK_EQ("{| |}", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "table_respects_use_line_break") { CheckResult result = check(R"( local a: { prop: string, anotherProp: number, thirdProp: boolean } )"); ToStringOptions opts; opts.useLineBreaks = true; if (FFlag::LuauSolverV2) CHECK_EQ( "{\n" " anotherProp: number,\n" " prop: string,\n" " thirdProp: boolean\n" "}", toString(requireType("a"), opts) ); else CHECK_EQ( "{|\n" " anotherProp: number,\n" " prop: string,\n" " thirdProp: boolean\n" "|}", toString(requireType("a"), opts) ); } TEST_CASE_FIXTURE(Fixture, "nil_or_nil_is_nil_not_question_mark") { CheckResult result = check(R"( type nil_ty = nil | nil local a : nil_ty = nil )"); ToStringOptions opts; opts.useLineBreaks = false; CHECK_EQ("nil", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "long_disjunct_of_nil_is_nil_not_question_mark") { CheckResult result = check(R"( type nil_ty = nil | nil | nil | nil | nil local a : nil_ty = nil )"); ToStringOptions opts; opts.useLineBreaks = false; CHECK_EQ("nil", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "metatable") { Type table{TypeVariant(TableType())}; Type metatable{TypeVariant(TableType())}; Type mtv{TypeVariant(MetatableType{&table, &metatable})}; if (FFlag::LuauSolverV2) CHECK_EQ("{ @metatable {| |}, {| |} }", toString(&mtv)); else CHECK_EQ("{ @metatable { }, { } }", toString(&mtv)); } TEST_CASE_FIXTURE(Fixture, "named_metatable") { Type table{TypeVariant(TableType())}; Type metatable{TypeVariant(TableType())}; Type mtv{TypeVariant(MetatableType{&table, &metatable, "NamedMetatable"})}; CHECK_EQ("NamedMetatable", toString(&mtv)); } TEST_CASE_FIXTURE(BuiltinsFixture, "named_metatable_toStringNamedFunction") { DOES_NOT_PASS_NEW_SOLVER_GUARD(); CheckResult result = check(R"( local function createTbl(): NamedMetatable return setmetatable({}, {}) end type NamedMetatable = typeof(createTbl()) )"); TypeId ty = requireType("createTbl"); const FunctionType* ftv = get(follow(ty)); REQUIRE(ftv); CHECK_EQ("createTbl(): NamedMetatable", toStringNamedFunction("createTbl", *ftv)); } TEST_CASE_FIXTURE(BuiltinsFixture, "exhaustive_toString_of_cyclic_table") { CheckResult result = check(R"( --!strict local Vec3 = {} Vec3.__index = Vec3 function Vec3.new() return setmetatable({x=0, y=0, z=0}, Vec3) end export type Vec3 = typeof(Vec3.new()) local thefun: any = function(self, o) return self end local multiply: ((Vec3, Vec3) -> Vec3) & ((Vec3, number) -> Vec3) = thefun Vec3.__mul = multiply local a = Vec3.new() )"); std::string a = toString(requireType("a"), {true}); CHECK_EQ(std::string::npos, a.find("CYCLE")); CHECK_EQ(std::string::npos, a.find("TRUNCATED")); if (FFlag::LuauSolverV2) { CHECK( "t2 where " "t1 = { __index: t1, __mul: ((t2, number) -> t2) & ((t2, t2) -> t2), new: () -> t2 } ; " "t2 = { @metatable t1, { x: number, y: number, z: number } }" == a ); } else { CHECK_EQ( "t2 where " "t1 = { __index: t1, __mul: ((t2, number) -> t2) & ((t2, t2) -> t2), new: () -> t2 } ; " "t2 = { @metatable t1, {| x: number, y: number, z: number |} }", a ); } } TEST_CASE_FIXTURE(Fixture, "intersection_parenthesized_only_if_needed") { auto utv = Type{UnionType{{builtinTypes->numberType, builtinTypes->stringType}}}; auto itv = Type{IntersectionType{{&utv, builtinTypes->booleanType}}}; CHECK_EQ(toString(&itv), "(number | string) & boolean"); } TEST_CASE_FIXTURE(Fixture, "union_parenthesized_only_if_needed") { auto itv = Type{IntersectionType{{builtinTypes->numberType, builtinTypes->stringType}}}; auto utv = Type{UnionType{{&itv, builtinTypes->booleanType}}}; CHECK_EQ(toString(&utv), "(number & string) | boolean"); } TEST_CASE_FIXTURE(Fixture, "functions_are_always_parenthesized_in_unions_or_intersections") { auto stringAndNumberPack = TypePackVar{TypePack{{builtinTypes->stringType, builtinTypes->numberType}}}; auto numberAndStringPack = TypePackVar{TypePack{{builtinTypes->numberType, builtinTypes->stringType}}}; auto sn2ns = Type{FunctionType{&stringAndNumberPack, &numberAndStringPack}}; auto ns2sn = Type{FunctionType(frontend.globals.globalScope->level, &numberAndStringPack, &stringAndNumberPack)}; auto utv = Type{UnionType{{&ns2sn, &sn2ns}}}; auto itv = Type{IntersectionType{{&ns2sn, &sn2ns}}}; CHECK_EQ(toString(&utv), "((number, string) -> (string, number)) | ((string, number) -> (number, string))"); CHECK_EQ(toString(&itv), "((number, string) -> (string, number)) & ((string, number) -> (number, string))"); } TEST_CASE_FIXTURE(Fixture, "simple_intersections_printed_on_one_line") { CheckResult result = check(R"( local a: string & number )"); ToStringOptions opts; opts.useLineBreaks = true; CHECK_EQ("number & string", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "complex_intersections_printed_on_multiple_lines") { CheckResult result = check(R"( local a: string & number & boolean )"); ToStringOptions opts; opts.useLineBreaks = true; opts.compositeTypesSingleLineLimit = 2; CHECK_EQ( "boolean\n" "& number\n" "& string", toString(requireType("a"), opts) ); } TEST_CASE_FIXTURE(Fixture, "overloaded_functions_always_printed_on_multiple_lines") { CheckResult result = check(R"( local a: ((string) -> string) & ((number) -> number) )"); ToStringOptions opts; opts.useLineBreaks = true; CHECK_EQ( "((number) -> number)\n" "& ((string) -> string)", toString(requireType("a"), opts) ); } TEST_CASE_FIXTURE(Fixture, "simple_unions_printed_on_one_line") { CheckResult result = check(R"( local a: number | boolean )"); ToStringOptions opts; opts.useLineBreaks = true; CHECK_EQ("boolean | number", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "complex_unions_printed_on_multiple_lines") { CheckResult result = check(R"( local a: string | number | boolean )"); ToStringOptions opts; opts.compositeTypesSingleLineLimit = 2; opts.useLineBreaks = true; CHECK_EQ( "boolean\n" "| number\n" "| string", toString(requireType("a"), opts) ); } TEST_CASE_FIXTURE(Fixture, "quit_stringifying_table_type_when_length_is_exceeded") { TableType ttv{}; for (char c : std::string("abcdefghijklmno")) ttv.props[std::string(1, c)] = {builtinTypes->numberType}; Type tv{ttv}; ToStringOptions o; o.exhaustive = false; o.maxTableLength = 40; if (FFlag::LuauSolverV2) CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 10 more ... |}"); else CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 10 more ... }"); } TEST_CASE_FIXTURE(Fixture, "stringifying_table_type_is_still_capped_when_exhaustive") { TableType ttv{}; for (char c : std::string("abcdefg")) ttv.props[std::string(1, c)] = {builtinTypes->numberType}; Type tv{ttv}; ToStringOptions o; o.exhaustive = true; o.maxTableLength = 40; if (FFlag::LuauSolverV2) CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 2 more ... |}"); else CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 2 more ... }"); } TEST_CASE_FIXTURE(Fixture, "quit_stringifying_type_when_length_is_exceeded") { CheckResult result = check(R"( function f0() end function f1(f) return f or f0 end function f2(f) return f or f1 end function f3(f) return f or f2 end )"); if (FFlag::LuauSolverV2) { LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions o; o.exhaustive = false; o.maxTypeLength = 20; CHECK_EQ(toString(requireType("f0"), o), "() -> ()"); CHECK_EQ(toString(requireType("f1"), o), "(a) -> (() -> ()) ... *TRUNCATED*"); CHECK_EQ(toString(requireType("f2"), o), "(b) -> ((a) -> (() -> ())... *TRUNCATED*"); CHECK_EQ(toString(requireType("f3"), o), "(c) -> ((b) -> ((a) -> (() -> ())... *TRUNCATED*"); } else { LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions o; o.exhaustive = false; o.maxTypeLength = 40; CHECK_EQ(toString(requireType("f0"), o), "() -> ()"); CHECK_EQ(toString(requireType("f1"), o), "(() -> ()) -> () -> ()"); CHECK_EQ(toString(requireType("f2"), o), "((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*"); CHECK_EQ(toString(requireType("f3"), o), "(((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*"); } } TEST_CASE_FIXTURE(Fixture, "stringifying_type_is_still_capped_when_exhaustive") { CheckResult result = check(R"( function f0() end function f1(f) return f or f0 end function f2(f) return f or f1 end function f3(f) return f or f2 end )"); if (FFlag::LuauSolverV2) { LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions o; o.exhaustive = true; o.maxTypeLength = 20; CHECK_EQ(toString(requireType("f0"), o), "() -> ()"); CHECK_EQ(toString(requireType("f1"), o), "(a) -> (() -> ()) ... *TRUNCATED*"); CHECK_EQ(toString(requireType("f2"), o), "(b) -> ((a) -> (() -> ())... *TRUNCATED*"); CHECK_EQ(toString(requireType("f3"), o), "(c) -> ((b) -> ((a) -> (() -> ())... *TRUNCATED*"); } else { LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions o; o.exhaustive = true; o.maxTypeLength = 40; CHECK_EQ(toString(requireType("f0"), o), "() -> ()"); CHECK_EQ(toString(requireType("f1"), o), "(() -> ()) -> () -> ()"); CHECK_EQ(toString(requireType("f2"), o), "((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*"); CHECK_EQ(toString(requireType("f3"), o), "(((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*"); } } TEST_CASE_FIXTURE(Fixture, "stringifying_table_type_correctly_use_matching_table_state_braces") { TableType ttv{TableState::Sealed, TypeLevel{}}; for (char c : std::string("abcdefghij")) ttv.props[std::string(1, c)] = {builtinTypes->numberType}; Type tv{ttv}; ToStringOptions o; o.maxTableLength = 40; if (FFlag::LuauSolverV2) CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 5 more ... }"); else CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 5 more ... |}"); } TEST_CASE_FIXTURE(Fixture, "stringifying_cyclic_union_type_bails_early") { Type tv{UnionType{{builtinTypes->stringType, builtinTypes->numberType}}}; UnionType* utv = getMutable(&tv); utv->options.push_back(&tv); utv->options.push_back(&tv); CHECK_EQ("t1 where t1 = number | string", toString(&tv)); } TEST_CASE_FIXTURE(Fixture, "stringifying_cyclic_intersection_type_bails_early") { Type tv{IntersectionType{}}; IntersectionType* itv = getMutable(&tv); itv->parts.push_back(&tv); itv->parts.push_back(&tv); CHECK_EQ("t1 where t1 = t1 & t1", toString(&tv)); } TEST_CASE_FIXTURE(Fixture, "stringifying_array_uses_array_syntax") { TableType ttv{TableState::Sealed, TypeLevel{}}; ttv.indexer = TableIndexer{builtinTypes->numberType, builtinTypes->stringType}; CHECK_EQ("{string}", toString(Type{ttv})); ttv.props["A"] = {builtinTypes->numberType}; if (FFlag::LuauSolverV2) CHECK_EQ("{ [number]: string, A: number }", toString(Type{ttv})); else CHECK_EQ("{| [number]: string, A: number |}", toString(Type{ttv})); ttv.props.clear(); ttv.state = TableState::Unsealed; CHECK_EQ("{string}", toString(Type{ttv})); } TEST_CASE_FIXTURE(Fixture, "generic_packs_are_stringified_differently_from_generic_types") { TypePackVar tpv{GenericTypePack{"a"}}; CHECK_EQ(toString(&tpv), "a..."); Type tv{GenericType{"a"}}; CHECK_EQ(toString(&tv), "a"); } TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names") { CheckResult result = check("type MyFunc = (a: number, string, c: number) -> string; local a : MyFunc"); LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions opts; opts.functionTypeArguments = true; CHECK_EQ("(a: number, string, c: number) -> string", toString(requireType("a"), opts)); } TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names_generic") { CheckResult result = check("local function f(n: number, ...: a...): (a...) return ... end"); LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions opts; opts.functionTypeArguments = true; CHECK_EQ("(n: number, a...) -> (a...)", toString(requireType("f"), opts)); } TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names_and_self") { CheckResult result = check(R"( local tbl = {} tbl.a = 2 function tbl:foo(b: number, c: number) return (self.a :: number) + b + c end type Table = typeof(tbl) type Foo = typeof(tbl.foo) local u: Foo )"); LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions opts; opts.functionTypeArguments = true; // Can't guess the name of 'self' to compare name, but at least there should be no assertion toString(requireType("u"), opts); } TEST_CASE_FIXTURE(Fixture, "generate_friendly_names_for_inferred_generics") { CheckResult result = check(R"( function id(x) return x end function id2(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30) return a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30 end )"); LUAU_REQUIRE_NO_ERRORS(result); CHECK_EQ("(a) -> a", toString(requireType("id"))); CHECK_EQ( "(a, b, c, d, e, f, g, h, i, j, k, l, " "m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1, c1, d1) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, " "x, y, z, a1, b1, c1, d1)", toString(requireType("id2")) ); } TEST_CASE_FIXTURE(Fixture, "toStringDetailed") { CheckResult result = check(R"( function id3(a, b, c) return a, b, c end )"); LUAU_REQUIRE_NO_ERRORS(result); ToStringOptions opts; TypeId id3Type = requireType("id3"); ToStringResult nameData = toStringDetailed(id3Type, opts); REQUIRE(3 == opts.nameMap.types.size()); REQUIRE_EQ("(a, b, c) -> (a, b, c)", nameData.name); const FunctionType* ftv = get(follow(id3Type)); REQUIRE(ftv != nullptr); auto params = flatten(ftv->argTypes).first; REQUIRE(3 == params.size()); CHECK("a" == toString(params[0], opts)); CHECK("b" == toString(params[1], opts)); CHECK("c" == toString(params[2], opts)); } TEST_CASE_FIXTURE(Fixture, "toStringErrorPack") { DOES_NOT_PASS_NEW_SOLVER_GUARD(); CheckResult result = check(R"( local function target(callback: nil) return callback(4, "hello") end )"); LUAU_REQUIRE_ERRORS(result); CHECK_EQ("(nil) -> (*error-type*)", toString(requireType("target"))); } TEST_CASE_FIXTURE(Fixture, "toStringGenericPack") { CheckResult result = check(R"( function foo(a, b) return a(b) end )"); LUAU_REQUIRE_NO_ERRORS(result); CHECK_EQ(toString(requireType("foo")), "((a) -> (b...), a) -> (b...)"); } TEST_CASE_FIXTURE(Fixture, "toString_the_boundTo_table_type_contained_within_a_TypePack") { Type tv1{TableType{}}; TableType* ttv = getMutable(&tv1); ttv->state = TableState::Sealed; ttv->props["hello"] = {builtinTypes->numberType}; ttv->props["world"] = {builtinTypes->numberType}; TypePackVar tpv1{TypePack{{&tv1}}}; Type tv2{TableType{}}; TableType* bttv = getMutable(&tv2); bttv->state = TableState::Free; bttv->props["hello"] = {builtinTypes->numberType}; bttv->boundTo = &tv1; TypePackVar tpv2{TypePack{{&tv2}}}; if (FFlag::LuauSolverV2) { CHECK_EQ("{ hello: number, world: number }", toString(&tpv1)); CHECK_EQ("{ hello: number, world: number }", toString(&tpv2)); } else { CHECK_EQ("{| hello: number, world: number |}", toString(&tpv1)); CHECK_EQ("{| hello: number, world: number |}", toString(&tpv2)); } } TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_return_type_if_pack_has_an_empty_head_link") { TypeArena arena; TypePackId realTail = arena.addTypePack({builtinTypes->stringType}); TypePackId emptyTail = arena.addTypePack({}, realTail); TypePackId argList = arena.addTypePack({builtinTypes->stringType}); TypeId functionType = arena.addType(FunctionType{argList, emptyTail}); CHECK("(string) -> string" == toString(functionType)); } TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_cyclic_function_type_in_union") { CheckResult result = check(R"( type F = ((() -> number)?) -> F? local function f(p) return f end local g: F = f )"); LUAU_REQUIRE_NO_ERRORS(result); CHECK_EQ("t1 where t1 = ((() -> number)?) -> t1?", toString(requireType("g"))); } TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_cyclic_function_type_in_intersection") { CheckResult result = check(R"( function f() return f end local a: ((number) -> ()) & typeof(f) )"); LUAU_REQUIRE_NO_ERRORS(result); if (FFlag::LuauSolverV2) CHECK("(() -> t1) & ((number) -> ()) where t1 = () -> t1" == toString(requireType("a"))); else CHECK_EQ("((number) -> ()) & t1 where t1 = () -> t1", toString(requireType("a"))); } TEST_CASE_FIXTURE(Fixture, "self_recursive_instantiated_param") { Type tableTy{TableType{}}; TableType* ttv = getMutable(&tableTy); ttv->name = "Table"; ttv->instantiatedTypeParams.push_back(&tableTy); CHECK_EQ(toString(tableTy), "Table"); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_id") { CheckResult result = check(R"( local function id(x) return x end )"); TypeId ty = requireType("id"); const FunctionType* ftv = get(follow(ty)); CHECK_EQ("id(x: a): a", toStringNamedFunction("id", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_map") { CheckResult result = check(R"( local function map(arr, fn) local t = {} for i = 0, #arr do t[i] = fn(arr[i]) end return t end )"); TypeId ty = requireType("map"); const FunctionType* ftv = get(follow(ty)); if (FFlag::LuauSolverV2) CHECK_EQ("map(arr: {a}, fn: (a) -> (b, ...unknown)): {b}", toStringNamedFunction("map", *ftv)); else CHECK_EQ("map(arr: {a}, fn: (a) -> b): {b}", toStringNamedFunction("map", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_generic_pack") { CheckResult result = check(R"( local function f(a: number, b: string) end local function test(...: T...): U... f(...) return 1, 2, 3 end )"); TypeId ty = requireType("test"); const FunctionType* ftv = get(follow(ty)); CHECK_EQ("test(...: T...): U...", toStringNamedFunction("test", *ftv)); } TEST_CASE("toStringNamedFunction_unit_f") { TypePackVar empty{TypePack{}}; FunctionType ftv{&empty, &empty, {}, false}; CHECK_EQ("f(): ()", toStringNamedFunction("f", ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics") { CheckResult result = check(R"( local function f(x: a, ...): (a, a, b...) return x, x, ... end )"); TypeId ty = requireType("f"); auto ftv = get(follow(ty)); CHECK_EQ("f(x: a, ...: any): (a, a, b...)", toStringNamedFunction("f", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics2") { CheckResult result = check(R"( local function f(): ...number return 1, 2, 3 end )"); TypeId ty = requireType("f"); auto ftv = get(follow(ty)); CHECK_EQ("f(): ...number", toStringNamedFunction("f", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics3") { CheckResult result = check(R"( local function f(): (string, ...number) return 'a', 1, 2, 3 end )"); TypeId ty = requireType("f"); auto ftv = get(follow(ty)); CHECK_EQ("f(): (string, ...number)", toStringNamedFunction("f", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_type_annotation_has_partial_argnames") { CheckResult result = check(R"( local f: (number, y: number) -> number )"); TypeId ty = requireType("f"); auto ftv = get(follow(ty)); CHECK_EQ("f(_: number, y: number): number", toStringNamedFunction("f", *ftv)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_hide_type_params") { CheckResult result = check(R"( local function f(x: T, g: (T) -> U)): () end )"); TypeId ty = requireType("f"); auto ftv = get(follow(ty)); ToStringOptions opts; opts.hideNamedFunctionTypeParameters = true; CHECK_EQ("f(x: T, g: (T) -> U): ()", toStringNamedFunction("f", *ftv, opts)); } TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_overrides_param_names") { CheckResult result = check(R"( local function test(a, b : string, ... : number) return a end )"); TypeId ty = requireType("test"); const FunctionType* ftv = get(follow(ty)); ToStringOptions opts; opts.namedFunctionOverrideArgNames = {"first", "second", "third"}; CHECK_EQ("test(first: a, second: string, ...: number): a", toStringNamedFunction("test", *ftv, opts)); } TEST_CASE_FIXTURE(Fixture, "pick_distinct_names_for_mixed_explicit_and_implicit_generics") { CheckResult result = check(R"( function foo(x: a, y) end )"); if (FFlag::LuauSolverV2) { CHECK("(a, unknown) -> ()" == toString(requireType("foo"))); } else CHECK("(a, b) -> ()" == toString(requireType("foo"))); } TEST_CASE_FIXTURE(Fixture, "tostring_unsee_ttv_if_array") { CheckResult result = check(R"( local x: {string} -- This code is constructed very specifically to use the same (by pointer -- identity) type in the function twice. local y: (typeof(x), typeof(x)) -> () )"); LUAU_REQUIRE_NO_ERRORS(result); CHECK(toString(requireType("y")) == "({string}, {string}) -> ()"); } TEST_CASE_FIXTURE(Fixture, "tostring_error_mismatch") { CheckResult result = check(R"( --!strict function f1() : {a : number, b : string, c : { d : number}} return { a = 1, b = "b", c = {d = "d"}} end )"); std::string expected; if (FFlag::LuauSolverV2) expected = R"(Type pack '{ a: number, b: string, c: { d: string } }' could not be converted into '{ a: number, b: string, c: { d: number } }'; at [0][read "c"][read "d"], string is not exactly number)"; else expected = R"(Type '{ a: number, b: string, c: { d: string } }' could not be converted into '{| a: number, b: string, c: {| d: number |} |}' caused by: Property 'c' is not compatible. Type '{ d: string }' could not be converted into '{| d: number |}' caused by: Property 'd' is not compatible. Type 'string' could not be converted into 'number' in an invariant context)"; LUAU_REQUIRE_ERROR_COUNT(1, result); std::string actual = toString(result.errors[0]); CHECK(expected == actual); } TEST_CASE_FIXTURE(Fixture, "checked_fn_toString") { ScopedFastFlag flags[] = { {FFlag::LuauSolverV2, true}, }; auto _result = loadDefinition(R"( @checked declare function abs(n: number) : number )"); auto result = check(Mode::Nonstrict, R"( local f = abs )"); LUAU_REQUIRE_NO_ERRORS(result); TypeId fn = requireType("f"); CHECK("@checked (number) -> number" == toString(fn)); } TEST_CASE_FIXTURE(Fixture, "read_only_properties") { ScopedFastFlag sff{FFlag::LuauSolverV2, true}; CheckResult result = check(R"( type A = {x: string} type B = {read x: string} )"); LUAU_REQUIRE_NO_ERRORS(result); CHECK("{ x: string }" == toString(requireTypeAlias("A"), {true})); CHECK("{ read x: string }" == toString(requireTypeAlias("B"), {true})); } TEST_CASE_FIXTURE(Fixture, "cycle_rooted_in_a_pack") { TypeArena arena; TypePackId thePack = arena.addTypePack({builtinTypes->numberType, builtinTypes->numberType}); TypePack* packPtr = getMutable(thePack); REQUIRE(packPtr); const TableType::Props theProps = { {"BaseField", Property::readonly(builtinTypes->unknownType)}, {"BaseMethod", Property::readonly(arena.addType(FunctionType{thePack, arena.addTypePack({})}))} }; TypeId theTable = arena.addType(TableType{theProps, {}, TypeLevel{}, TableState::Sealed}); packPtr->head[0] = theTable; if (FFlag::LuauSolverV2) CHECK("tp1 where tp1 = { read BaseField: unknown, read BaseMethod: (tp1) -> () }, number" == toString(thePack)); else CHECK("tp1 where tp1 = {| BaseField: unknown, BaseMethod: (tp1) -> () |}, number" == toString(thePack)); } TEST_CASE_FIXTURE(Fixture, "correct_stringification_user_defined_type_functions") { TypeFunction user{"user", nullptr}; TypeFunctionInstanceType tftt{ NotNull{&user}, std::vector{builtinTypes->numberType}, // Type Function Arguments {}, {AstName{"woohoo"}}, // Type Function Name }; Type tv{tftt}; if (FFlag::LuauSolverV2 && FFlag::LuauUserDefinedTypeFunctions2) CHECK_EQ(toString(&tv, {}), "woohoo"); } TEST_SUITE_END();