-- This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details -- This file is based on Lua 5.x tests -- https://github.com/lua/lua/tree/master/testes print("testing numbers and math lib") do local a,b,c = "2", " 3e0 ", " 10 " assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0) assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string') assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ") assert(c%a == 0 and a^b == 8) end do local a,b = math.modf(3.5) assert(a == 3 and b == 0.5) assert(math.huge > 10e30) assert(-math.huge < -10e30) end function f(...) if select('#', ...) == 1 then return (...) else return "***" end end assert(pcall(tonumber) == false) assert(tonumber{} == nil) assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and tonumber'.01' == 0.01 and tonumber'-1.' == -1 and tonumber'+1.' == 1) assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and tonumber'1e' == nil and tonumber'1.0e+' == nil and tonumber'.' == nil) assert(tonumber('-12') == -10-2) assert(tonumber('-1.2e2') == - - -120) assert(f(tonumber('1 a')) == nil) assert(f(tonumber('e1')) == nil) assert(f(tonumber('e 1')) == nil) assert(f(tonumber(' 3.4.5 ')) == nil) assert(f(tonumber('')) == nil) assert(f(tonumber('', 8)) == nil) assert(f(tonumber(' ')) == nil) assert(f(tonumber(' ', 9)) == nil) assert(f(tonumber('99', 8)) == nil) assert(tonumber(' 1010 ', 2) == 10) assert(tonumber('10', 36) == 36) --assert(tonumber('\n -10 \n', 36) == -36) --assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15))))))) assert(tonumber('fFfa', 15) == nil) --assert(tonumber(string.rep('1', 42), 2) + 1 == 2^42) assert(tonumber(string.rep('1', 32), 2) + 1 == 2^32) --assert(tonumber('-fffffFFFFF', 16)-1 == -2^40) assert(tonumber('ffffFFFF', 16)+1 == 2^32) assert(1.1 == 1.+.1) assert(100.0 == 1E2 and .01 == 1e-2) assert(1111111111111111-1111111111111110== 1000.00e-03) -- 1234567890123456 assert(1.1 == '1.'+'.1') assert('1111111111111111'-'1111111111111110' == tonumber" +0.001e+3 \n\t") function eq (a,b,limit) if not limit then limit = 10E-10 end return math.abs(a-b) <= limit end assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31) assert(0.123456 > 0.123455) assert(tonumber('+1.23E30') == 1.23*10^30) -- testing order operators assert(not(1<1) and (1<2) and not(2<1)) assert(not('a'<'a') and ('a'<'b') and not('b'<'a')) assert((1<=1) and (1<=2) and not(2<=1)) assert(('a'<='a') and ('a'<='b') and not('b'<='a')) assert(not(1>1) and not(1>2) and (2>1)) assert(not('a'>'a') and not('a'>'b') and ('b'>'a')) assert((1>=1) and not(1>=2) and (2>=1)) assert(('a'>='a') and not('a'>='b') and ('b'>='a')) assert((unk and unk > 0) == nil) -- validate precedence between and and > -- testing mod operator assert(-4%3 == 2) assert(4%-3 == -2) assert(math.pi - math.pi % 1 == 3) assert(math.pi - math.pi % 0.001 == 3.141) do local a = 3 % 0; assert(a ~= a) -- Expect NaN assert(((2^53+1) % 2) == 0) assert((1234 % (2^53+1)) == 1234) end local function testbit(a, n) return a/2^n % 2 >= 1 end assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1)) assert(eq(math.tan(math.pi/4), 1)) assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0)) assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and eq(math.asin(1), math.pi/2)) assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2)) assert(math.abs(-10) == 10) assert(eq(math.atan2(1,0), math.pi/2)) assert(math.ceil(4.5) == 5.0) assert(math.floor(4.5) == 4.0) assert(10 % 3 == 1) assert(eq(math.sqrt(10)^2, 10)) assert(eq(math.log10(2), math.log(2)/math.log(10))) assert(eq(math.log(2, 2), 1)) assert(eq(math.log(9, 3), 2)) assert(eq(math.log(100, 10), 2)) assert(eq(math.exp(0), 1)) assert(eq(math.sin(10), math.sin(10%(2*math.pi)))) local v,e = math.frexp(math.pi) assert(eq(math.ldexp(v,e), math.pi)) assert(eq(math.tanh(3.5), math.sinh(3.5)/math.cosh(3.5))) assert(tonumber(' 1.3e-2 ') == 1.3e-2) assert(tonumber(' -1.00000000000001 ') == -1.00000000000001) -- testing constant limits -- 2^23 = 8388608 assert(8388609 + -8388609 == 0) assert(8388608 + -8388608 == 0) assert(8388607 + -8388607 == 0) if rawget(_G, "_soft") then return end f = "a = {" i = 1 repeat f = f .. "{" .. math.sin(i) .. ", " .. math.cos(i) .. ", " .. (i/3) .. "},\n" i=i+1 until i > 1000 f = f .. "}" assert(loadstring(f))() assert(eq(a[300][1], math.sin(300))) assert(eq(a[600][1], math.sin(600))) assert(eq(a[500][2], math.cos(500))) assert(eq(a[800][2], math.cos(800))) assert(eq(a[200][3], 200/3)) assert(eq(a[1000][3], 1000/3, 0.001)) print('+') do -- testing NaN local NaN -- to avoid constant folding NaN = 10e500 - 10e400 assert(NaN ~= NaN) assert(not (NaN == NaN)) assert(not (NaN < NaN)) assert(not (NaN <= NaN)) assert(not (NaN > NaN)) assert(not (NaN >= NaN)) assert(not (0 == NaN)) assert(not (0 < NaN)) assert(not (0 <= NaN)) assert(not (0 > NaN)) assert(not (0 >= NaN)) assert(not (NaN == 0)) assert(not (NaN < 0)) assert(not (NaN <= 0)) assert(not (NaN > 0)) assert(not (NaN >= 0)) assert(if NaN < 0 then false else true) assert(if NaN <= 0 then false else true) assert(if NaN > 0 then false else true) assert(if NaN >= 0 then false else true) local a = {} assert(not pcall(function () a[NaN] = 1 end)) assert(a[NaN] == nil) a[1] = 1 assert(not pcall(function () a[NaN] = 1 end)) assert(a[NaN] == nil) end -- extra NaN tests, hidden in a function do function neq(a) return a ~= a end function eq(a) return a == a end function lt(a) return a < a end function le(a) return a <= a end function gt(a) return a > a end function ge(a) return a >= a end local NaN -- to avoid constant folding NaN = 10e500 - 10e400 assert(neq(NaN)) assert(not eq(NaN)) assert(not lt(NaN)) assert(not le(NaN)) assert(not gt(NaN)) assert(not ge(NaN)) end -- require "checktable" -- stat(a) a = nil -- testing implicit conversions local a,b = '10', '20' assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20) assert(a == '10' and b == '20') math.randomseed(0) local i = 0 local Max = 0 local Min = 2 repeat local t = math.random() Max = math.max(Max, t) Min = math.min(Min, t) i=i+1 flag = eq(Max, 1, 0.001) and eq(Min, 0, 0.001) until flag or i>10000 assert(0 <= Min and Max<1) assert(flag); for i=1,10 do local t = math.random(5) assert(1 <= t and t <= 5) end i = 0 Max = -200 Min = 200 repeat local t = math.random(-10,0) Max = math.max(Max, t) Min = math.min(Min, t) i=i+1 flag = (Max == 0 and Min == -10) until flag or i>10000 assert(-10 <= Min and Max<=0) assert(flag); assert(select(2, pcall(math.random, 1, 2, 3)):match("wrong number of arguments")) -- argument count function nothing() end assert(pcall(math.abs) == false) assert(pcall(function() return math.abs(nothing()) end) == false) -- min/max assert(math.min(1) == 1) assert(math.min(1, 2) == 1) assert(math.min(1, 2, -1) == -1) assert(math.min(1, -1, 2) == -1) assert(math.max(1) == 1) assert(math.max(1, 2) == 2) assert(math.max(1, 2, -1) == 2) assert(math.max(1, -1, 2) == 2) -- noise assert(math.noise(0.5) == 0) assert(math.noise(0.5, 0.5) == -0.25) assert(math.noise(0.5, 0.5, -0.5) == 0.125) assert(math.noise(455.7204209769105, 340.80410508750134, 121.80087666537628) == 0.5010709762573242) local inf = math.huge * 2 local nan = 0 / 0 -- sign assert(math.sign(0) == 0) assert(math.sign(42) == 1) assert(math.sign(-42) == -1) assert(math.sign(inf) == 1) assert(math.sign(-inf) == -1) assert(math.sign(nan) == 0) assert(math.min(nan, 2) ~= math.min(nan, 2)) assert(math.min(1, nan) == 1) assert(math.max(nan, 2) ~= math.max(nan, 2)) assert(math.max(1, nan) == 1) -- clamp assert(math.clamp(-1, 0, 1) == 0) assert(math.clamp(0.5, 0, 1) == 0.5) assert(math.clamp(2, 0, 1) == 1) assert(math.clamp(4, 0, 0) == 0) -- round assert(math.round(0) == 0) assert(math.round(0.4) == 0) assert(math.round(0.5) == 1) assert(math.round(3.5) == 4) assert(math.round(-0.4) == 0) assert(math.round(-0.5) == -1) assert(math.round(-3.5) == -4) assert(math.round(math.huge) == math.huge) assert(math.round(0.49999999999999994) == 0) assert(math.round(-0.49999999999999994) == 0) -- fmod assert(math.fmod(3, 2) == 1) assert(math.fmod(-3, 2) == -1) assert(math.fmod(3, -2) == 1) assert(math.fmod(-3, -2) == -1) -- pow assert(math.pow(2, 0) == 1) assert(math.pow(2, 2) == 4) assert(math.pow(4, 0.5) == 2) assert(math.pow(-2, 2) == 4) assert(tostring(math.pow(-2, 0.5)) == "nan") -- most of the tests above go through fastcall path -- to make sure the basic implementations are also correct we test these functions with string->number coercions assert(math.abs("-4") == 4) assert(math.acos("1") == 0) assert(math.asin("0") == 0) assert(math.atan2("0", "0") == 0) assert(math.atan("0") == 0) assert(math.ceil("1.5") == 2) assert(math.cosh("0") == 1) assert(math.cos("0") == 1) assert(math.deg("0") == 0) assert(math.exp("0") == 1) assert(math.floor("1.5") == 1) assert(math.fmod("1.5", 1) == 0.5) local v,e = math.frexp("1.5") assert(v == 0.75 and e == 1) assert(math.ldexp("0.75", 1) == 1.5) assert(math.log10("10") == 1) assert(math.log("0") == -inf) assert(math.log("8", 2) == 3) assert(math.log("10", 10) == 1) assert(math.log("16", 4) == 2) assert(math.max("1", 2) == 2) assert(math.max(2, "1") == 2) assert(math.max(1, 2, "3") == 3) assert(math.min("1", 2) == 1) assert(math.min(2, "1") == 1) assert(math.min(1, 2, "3") == 1) local v,f = math.modf("1.5") assert(v == 1 and f == 0.5) assert(math.pow("2", 2) == 4) assert(math.rad("0") == 0) assert(math.sinh("0") == 0) assert(math.sin("0") == 0) assert(math.sqrt("4") == 2) assert(math.tanh("0") == 0) assert(math.tan("0") == 0) assert(math.clamp("0", 2, 3) == 2) assert(math.clamp("4", 2, 3) == 3) assert(math.sign("2") == 1) assert(math.sign("-2") == -1) assert(math.sign("0") == 0) assert(math.round("1.8") == 2) -- test that fastcalls return correct number of results assert(select('#', math.floor(1.4)) == 1) assert(select('#', math.ceil(1.6)) == 1) assert(select('#', math.sqrt(9)) == 1) assert(select('#', math.deg(9)) == 1) assert(select('#', math.rad(9)) == 1) assert(select('#', math.sin(1.5)) == 1) assert(select('#', math.atan2(1.5, 0.5)) == 1) assert(select('#', math.modf(1.5)) == 2) assert(select('#', math.frexp(1.5)) == 2) -- test that fastcalls that return variadic results return them correctly in variadic position assert(select(1, math.modf(1.5)) == 1) assert(select(2, math.modf(1.5)) == 0.5) assert(select(1, math.frexp(1.5)) == 0.75) assert(select(2, math.frexp(1.5)) == 1) return('OK')