Prototyping strict mode (#399)

* First cut of strict mode

Co-authored-by: Lily Brown <lily@lily.fyi>
This commit is contained in:
Alan Jeffrey 2022-03-02 16:02:51 -06:00 committed by GitHub
parent d277cc2c3b
commit c5477d522d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
42 changed files with 1598 additions and 316 deletions

View File

@ -2,10 +2,8 @@
*.agdai
Main
MAlonzo
Examples
PrettyPrinter
Interpreter
Properties
!Tests/Interpreter
!Tests/PrettyPrinter
.ghc.*

View File

@ -0,0 +1,8 @@
{-# OPTIONS --rewriting #-}
module Everything where
import Examples
import Properties
import PrettyPrinter
import Interpreter

View File

@ -1,8 +1,10 @@
{-# OPTIONS --rewriting #-}
module Examples.OpSem where
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; subst)
open import Luau.Syntax using (Block; var; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Syntax using (Block; var; val; nil; local_←_; _∙_; done; return; block_is_end)
open import Luau.Heap using ()
ex1 : (local (var "x") nil return (var "x") done) ⟶ᴮ (return nil done)
ex1 = subst
ex1 : (local (var "x") val nil return (var "x") done) ⟶ᴮ (return (val nil) done)
ex1 = subst nil

View File

@ -4,22 +4,17 @@ module Examples.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (true; false)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +; <; true; false)
open import Luau.Value using (nil; number; bool)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +; <; val; bool)
open import Luau.Run using (run; return)
open import Luau.Heap using (lookup-next; next-emp; lookup-next-emp)
import Agda.Builtin.Equality.Rewrite
{-# REWRITE lookup-next next-emp lookup-next-emp #-}
ex1 : (run (function "id" var "x" is return (var "x") done end return (var "id" $ nil) done) return nil _)
ex1 : (run (function "id" var "x" is return (var "x") done end return (var "id" $ val nil) done) return nil _)
ex1 = refl
ex2 : (run (function "fn" var "x" is return (number 123.0) done end return (var "fn" $ nil) done) return (number 123.0) _)
ex2 : (run (function "fn" var "x" is return (val (number 123.0)) done end return (var "fn" $ val nil) done) return (number 123.0) _)
ex2 = refl
ex3 : (run (function "fn" var "x" is return (binexp (number 1.0) + (number 2.0)) done end return (var "fn" $ nil) done) return (number 3.0) _)
ex3 : (run (function "fn" var "x" is return (binexp (val (number 1.0)) + (val (number 2.0))) done end return (var "fn" $ val nil) done) return (number 3.0) _)
ex3 = refl
ex4 : (run (function "fn" var "x" is return (binexp (number 1.0) < (number 2.0)) done end return (var "fn" $ nil) done) return (bool true) _)
ex4 : (run (function "fn" var "x" is return (binexp (val (number 1.0)) < (val (number 2.0))) done end return (var "fn" $ val nil) done) return (bool true) _)
ex4 = refl

View File

@ -2,7 +2,7 @@ module Examples.Syntax where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Syntax using (var; _$_; return; nil; function_is_end; local_←_; done; _∙_; _⟨_⟩)
open import Luau.Syntax using (var; _$_; return; val; nil; function_is_end; local_←_; done; _∙_; _⟨_⟩)
open import Luau.Syntax.ToString using (exprToString; blockToString)
ex1 : exprToString(function "" var "x" is return (var "f" $ var "x") done end)
@ -11,7 +11,7 @@ ex1 : exprToString(function "" ⟨ var "x" ⟩ is return (var "f" $ var "x") ∙
"end"
ex1 = refl
ex2 : blockToString(local var "x" nil return (var "x") done)
ex2 : blockToString(local var "x" (val nil) return (var "x") done)
"local x = nil\n" ++
"return x"
ex2 = refl

View File

@ -25,3 +25,4 @@ ex6 = refl
ex7 : typeToString((nil nil) ((nil (nil nil)) nil)) "((nil) -> nil | (nil) -> (nil) -> nil)?"
ex7 = refl

View File

@ -1,15 +1,21 @@
{-# OPTIONS --rewriting #-}
module FFI.Data.Aeson where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Equality.Rewrite using ()
open import Agda.Builtin.Bool using (Bool)
open import Agda.Builtin.String using (String)
open import FFI.Data.ByteString using (ByteString)
open import FFI.Data.HaskellString using (HaskellString; pack)
open import FFI.Data.Maybe using (Maybe)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either; mapLeft)
open import FFI.Data.Scientific using (Scientific)
open import FFI.Data.Vector using (Vector)
open import Properties.Equality using (_≢_)
{-# FOREIGN GHC import qualified Data.Aeson #-}
{-# FOREIGN GHC import qualified Data.Aeson.Key #-}
{-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-}
@ -19,14 +25,35 @@ postulate
Key : Set
fromString : String Key
toString : Key String
empty : {A} KeyMap A
singleton : {A} Key A (KeyMap A)
insert : {A} Key A (KeyMap A) (KeyMap A)
delete : {A} Key (KeyMap A) (KeyMap A)
unionWith : {A} (A A A) (KeyMap A) (KeyMap A) (KeyMap A)
lookup : {A} Key -> KeyMap A -> Maybe A
{-# POLARITY KeyMap ++ #-}
{-# COMPILE GHC KeyMap = type Data.Aeson.KeyMap.KeyMap #-}
{-# COMPILE GHC Key = type Data.Aeson.Key.Key #-}
{-# COMPILE GHC fromString = Data.Aeson.Key.fromText #-}
{-# COMPILE GHC toString = Data.Aeson.Key.toText #-}
{-# COMPILE GHC empty = \_ -> Data.Aeson.KeyMap.empty #-}
{-# COMPILE GHC singleton = \_ -> Data.Aeson.KeyMap.singleton #-}
{-# COMPILE GHC insert = \_ -> Data.Aeson.KeyMap.insert #-}
{-# COMPILE GHC delete = \_ -> Data.Aeson.KeyMap.delete #-}
{-# COMPILE GHC unionWith = \_ -> Data.Aeson.KeyMap.unionWith #-}
{-# COMPILE GHC lookup = \_ -> Data.Aeson.KeyMap.lookup #-}
postulate lookup-insert : {A} k v (m : KeyMap A) (lookup k (insert k v m) just v)
postulate lookup-empty : {A} k (lookup {A} k empty nothing)
postulate lookup-insert-not : {A} j k v (m : KeyMap A) (j k) (lookup k m lookup k (insert j v m))
postulate singleton-insert-empty : {A} k (v : A) (singleton k v insert k v empty)
postulate insert-swap : {A} j k (v w : A) m (j k) insert j v (insert k w m) insert k w (insert j v m)
postulate insert-over : {A} j k (v w : A) m (j k) insert j v (insert k w m) insert j v m
postulate to-from : k toString(fromString k) k
postulate from-to : k fromString(toString k) k
{-# REWRITE lookup-insert lookup-empty singleton-insert-empty #-}
data Value : Set where
object : KeyMap Value Value
array : Vector Value Value

View File

@ -1,8 +1,14 @@
module FFI.Data.Maybe where
open import Agda.Builtin.Equality using (_≡_; refl)
{-# FOREIGN GHC import qualified Data.Maybe #-}
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A Maybe A
{-# COMPILE GHC Maybe = data Data.Maybe.Maybe (Data.Maybe.Nothing|Data.Maybe.Just) #-}
just-inv : {A} {x y : A} (just x just y) (x y)
just-inv refl = refl

View File

@ -1,11 +1,15 @@
{-# OPTIONS --rewriting #-}
module FFI.Data.Vector where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Equality.Rewrite using ()
open import Agda.Builtin.Int using (Int; pos; negsuc)
open import Agda.Builtin.Nat using (Nat)
open import Agda.Builtin.Bool using (Bool; false; true)
open import FFI.Data.HaskellInt using (HaskellInt; haskellIntToInt; intToHaskellInt)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Equality using (_≢_)
{-# FOREIGN GHC import qualified Data.Vector #-}
@ -30,8 +34,13 @@ postulate
{-# COMPILE GHC snoc = \_ -> Data.Vector.snoc #-}
postulate length-empty : {A} (length (empty {A}) 0)
postulate lookup-empty : {A} n (lookup (empty {A}) n nothing)
postulate lookup-snoc : {A} (x : A) (v : Vector A) (lookup (snoc v x) (length v) just x)
postulate lookup-length : {A} (v : Vector A) (lookup v (length v) nothing)
postulate lookup-snoc-empty : {A} (x : A) (lookup (snoc empty x) 0 just x)
postulate lookup-snoc-not : {A n} (x : A) (v : Vector A) (n length v) (lookup v n lookup (snoc v x) n)
{-# REWRITE length-empty lookup-snoc lookup-length lookup-snoc-empty lookup-empty #-}
head : {A} (Vector A) (Maybe A)
head vec with null vec

View File

@ -1,3 +1,5 @@
{-# OPTIONS --rewriting #-}
module Interpreter where
open import Agda.Builtin.IO using (IO)
@ -7,31 +9,41 @@ open import Agda.Builtin.Unit using ()
open import FFI.IO using (getContents; putStrLn; _>>=_; _>>_)
open import FFI.Data.Aeson using (Value; eitherDecode)
open import FFI.Data.Either using (Left; Right)
open import FFI.Data.Maybe using (just; nothing)
open import FFI.Data.String using (String; _++_)
open import FFI.Data.Text.Encoding using (encodeUtf8)
open import FFI.System.Exit using (exitWith; ExitFailure)
open import Luau.Syntax using (Block)
open import Luau.StrictMode.ToString using (warningToStringᴮ)
open import Luau.Syntax using (Block; yes; maybe; isAnnotatedᴮ)
open import Luau.Syntax.FromJSON using (blockFromJSON)
open import Luau.Syntax.ToString using (blockToString)
open import Luau.Syntax.ToString using (blockToString; valueToString)
open import Luau.Run using (run; return; done; error)
open import Luau.RuntimeError.ToString using (errToStringᴮ)
open import Luau.Value.ToString using (valueToString)
runBlock : {a} Block a IO
runBlock block with run block
runBlock block | return V D = putStrLn (valueToString V)
runBlock block | done D = putStrLn "nil"
runBlock block | error E D = putStrLn (errToStringᴮ E)
open import Properties.StrictMode using (wellTypedProgramsDontGoWrong)
runBlock : a Block a IO
runBlock a block with run block
runBlock a block | return V D = putStrLn ("\nRAN WITH RESULT: " ++ valueToString V)
runBlock a block | done D = putStrLn ("\nRAN")
runBlock maybe block | error E D = putStrLn ("\nRUNTIME ERROR:\n" ++ errToStringᴮ _ E)
runBlock yes block | error E D with wellTypedProgramsDontGoWrong _ block _ D E
runBlock yes block | error E D | W = putStrLn ("\nRUNTIME ERROR:\n" ++ errToStringᴮ _ E ++ "\n\nTYPE ERROR:\n" ++ warningToStringᴮ _ W)
runBlock : Block maybe IO
runBlock B with isAnnotatedᴮ B
runBlock B | nothing = putStrLn ("UNANNOTATED PROGRAM:\n" ++ blockToString B) >> runBlock maybe B
runBlock B | just B = putStrLn ("ANNOTATED PROGRAM:\n" ++ blockToString B) >> runBlock yes B
runJSON : Value IO
runJSON value with blockFromJSON(value)
runJSON value | (Left err) = putStrLn ("Luau error: " ++ err) >> exitWith (ExitFailure (pos 1))
runJSON value | (Left err) = putStrLn ("LUAU ERROR: " ++ err) >> exitWith (ExitFailure (pos 1))
runJSON value | (Right block) = runBlock block
runString : String IO
runString txt with eitherDecode (encodeUtf8 txt)
runString txt | (Left err) = putStrLn ("JSON error: " ++ err) >> exitWith (ExitFailure (pos 1))
runString txt | (Left err) = putStrLn ("JSON ERROR: " ++ err) >> exitWith (ExitFailure (pos 1))
runString txt | (Right value) = runJSON value
main : IO

View File

@ -5,13 +5,14 @@ open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Nat using (Nat; _==_)
open import Agda.Builtin.String using (String)
open import Agda.Builtin.TrustMe using (primTrustMe)
open import Properties.Dec using (Dec; yes; no; )
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (_≢_)
Addr : Set
Addr = Nat
_≡ᴬ_ : (a b : Addr) Dec (a b)
a ≡ᴬ b with a == b
a ≡ᴬ b | false = no p where postulate p : (a b)
a ≡ᴬ b | false = no p where postulate p : (a b)
a ≡ᴬ b | true = yes primTrustMe

View File

@ -1,32 +1,39 @@
{-# OPTIONS --rewriting #-}
module Luau.Heap where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import FFI.Data.Vector using (Vector; length; snoc; empty)
open import Luau.Addr using (Addr)
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Vector using (Vector; length; snoc; empty; lookup-snoc-not)
open import Luau.Addr using (Addr; _≡ᴬ_)
open import Luau.Var using (Var)
open import Luau.Syntax using (Block; Expr; Annotated; FunDec; nil; addr; function_is_end)
open import Luau.Syntax using (Block; Expr; Annotated; FunDec; nil; function_is_end)
open import Properties.Equality using (_≢_; trans)
open import Properties.Remember using (remember; _,_)
open import Properties.Dec using (yes; no)
data HeapValue (a : Annotated) : Set where
function_is_end : FunDec a Block a HeapValue a
-- Heap-allocated objects
data Object (a : Annotated) : Set where
function_is_end : FunDec a Block a Object a
Heap : Annotated Set
Heap a = Vector (HeapValue a)
Heap a = Vector (Object a)
data _≡_⊕_↦_ {a} : Heap a Heap a Addr HeapValue a Set where
data _≡_⊕_↦_ {a} : Heap a Heap a Addr Object a Set where
defn : {H val}
-----------------------------------
(snoc H val) H (length H) val
_[_] : {a} Heap a Addr Maybe (HeapValue a)
_[_] : {a} Heap a Addr Maybe (Object a)
_[_] = FFI.Data.Vector.lookup
: {a} Heap a
= empty
data AllocResult a (H : Heap a) (V : HeapValue a) : Set where
data AllocResult a (H : Heap a) (V : Object a) : Set where
ok : b H (H H b V) AllocResult a H V
alloc : {a} H V AllocResult a H V
@ -35,15 +42,8 @@ alloc H V = ok (length H) (snoc H V) defn
next : {a} Heap a Addr
next = length
allocated : {a} Heap a HeapValue a Heap a
allocated : {a} Heap a Object a Heap a
allocated = snoc
-- next-emp : (length ∅ ≡ 0)
next-emp = FFI.Data.Vector.length-empty
-- lookup-next : ∀ V H → (lookup (allocated H V) (next H) ≡ just V)
lookup-next = FFI.Data.Vector.lookup-snoc
-- lookup-next-emp : ∀ V → (lookup (allocated emp V) 0 ≡ just V)
lookup-next-emp = FFI.Data.Vector.lookup-snoc-empty
lookup-not-allocated : {a} {H H : Heap a} {b c O} (H H b O) (c b) (H [ c ] H [ c ])
lookup-not-allocated {H = H} {O = O} defn p = lookup-snoc-not O H p

View File

@ -1,66 +1,53 @@
{-# OPTIONS --rewriting #-}
module Luau.OpSem where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality)
open import Agda.Builtin.Bool using (Bool; true; false)
open import Utility.Bool using (not; _or_; _and_)
open import Agda.Builtin.Nat using (_==_)
open import FFI.Data.Maybe using (just)
open import Agda.Builtin.Nat using () renaming (_==_ to _==ᴬ_)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ≡; ≅; ≤; ≥; number)
open import Luau.Value using (addr; val; number; Value; bool)
open import Luau.Syntax using (Value; Expr; Stat; Block; nil; addr; val; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; number; bool)
open import Luau.RuntimeType using (RuntimeType; valueType)
open import Properties.Product using (_×_; _,_)
evalNumOp : Float BinaryOperator Float Value
evalNumOp x + y = number (primFloatPlus x y)
evalNumOp x - y = number (primFloatMinus x y)
evalNumOp x * y = number (primFloatTimes x y)
evalNumOp x / y = number (primFloatDiv x y)
evalNumOp x < y = bool (primFloatLess x y)
evalNumOp x > y = bool (primFloatLess y x)
evalNumOp x y = bool (primFloatEquality x y)
evalNumOp x y = bool (primFloatInequality x y)
evalNumOp x y = bool ((primFloatLess x y) or (primFloatEquality x y))
evalNumOp x y = bool ((primFloatLess y x) or (primFloatEquality x y))
evalEqOp : Value Value Bool
evalEqOp Value.nil Value.nil = true
evalEqOp (addr x) (addr y) = (x == y)
evalEqOp (number x) (number y) = primFloatEquality x y
evalEqOp (bool true) (bool y) = y
evalEqOp (bool false) (bool y) = not y
evalEqOp _ _ = false
evalEqOp : Value Value Value
evalEqOp Value.nil Value.nil = bool true
evalEqOp (addr x) (addr y) = bool (x == y)
evalEqOp (number x) (number y) = bool (primFloatEquality x y)
evalEqOp (bool true) (bool y) = bool y
evalEqOp (bool false) (bool y) = bool (not y)
evalEqOp _ _ = bool false
evalNeqOp : Value Value Bool
evalNeqOp (number x) (number y) = primFloatInequality x y
evalNeqOp x y = not (evalEqOp x y)
evalNeqOp : Value Value Value
evalNeqOp Value.nil Value.nil = bool false
evalNeqOp (addr x) (addr y) = bool (not (x == y))
evalNeqOp (number x) (number y) = bool (primFloatInequality x y)
evalNeqOp (bool true) (bool y) = bool (not y)
evalNeqOp (bool false) (bool y) = bool y
evalNeqOp _ _ = bool true
coerceToBool : Value Bool
coerceToBool Value.nil = false
coerceToBool (addr x) = true
coerceToBool (number x) = true
coerceToBool (bool x) = x
data _⟦_⟧_⟶_ : Value BinaryOperator Value Value Set where
+ : m n (number m) + (number n) number (primFloatPlus m n)
- : m n (number m) - (number n) number (primFloatMinus m n)
/ : m n (number m) / (number n) number (primFloatTimes m n)
* : m n (number m) * (number n) number (primFloatDiv m n)
< : m n (number m) < (number n) bool (primFloatLess m n)
> : m n (number m) > (number n) bool (primFloatLess n m)
<= : m n (number m) <= (number n) bool ((primFloatLess m n) or (primFloatEquality m n))
>= : m n (number m) >= (number n) bool ((primFloatLess n m) or (primFloatEquality m n))
== : v w v == w bool (evalEqOp v w)
~= : v w v ~= w bool (evalNeqOp v w)
data _⊢_⟶ᴮ_⊣_ {a} : Heap a Block a Block a Heap a Set
data _⊢_⟶ᴱ_⊣_ {a} : Heap a Expr a Expr a Heap a Set
data _⊢_⟶ᴱ_⊣_ where
nil : {H}
-------------------
H nil ⟶ᴱ nil H
function : {H H a F B}
function : a {H H F B}
H H a (function F is B end)
-------------------------------------------
H (function F is B end) ⟶ᴱ (addr a) H
H (function F is B end) ⟶ᴱ val(addr a) H
app₁ : {H H M M N}
@ -68,17 +55,18 @@ data _⊢_⟶ᴱ_⊣_ where
-----------------------------
H (M $ N) ⟶ᴱ (M $ N) H
app₂ : {H H V N N}
app₂ : v {H H N N}
H N ⟶ᴱ N H
-----------------------------
H (val V $ N) ⟶ᴱ (val V $ N) H
H (val v $ N) ⟶ᴱ (val v $ N) H
beta : {H a F B V}
beta : O v {H a F B}
H [ a ] just(function F is B end)
(O function F is B end)
H [ a ] just(O)
-----------------------------------------------------------------------------
H (addr a $ val V) ⟶ᴱ (block (fun F) is (B [ V / name(arg F) ]ᴮ) end) H
H (val (addr a) $ val v) ⟶ᴱ (block (fun F) is (B [ v / name(arg F) ]ᴮ) end) H
block : {H H B B b}
@ -86,44 +74,34 @@ data _⊢_⟶ᴱ_⊣_ where
----------------------------------------------------
H (block b is B end) ⟶ᴱ (block b is B end) H
return : {H V B b}
return : v {H B b}
--------------------------------------------------------
H (block b is return (val V) B end) ⟶ᴱ (val V) H
H (block b is return (val v) B end) ⟶ᴱ val v H
done : {H b}
---------------------------------
H (block b is done end) ⟶ᴱ nil H
--------------------------------------------
H (block b is done end) ⟶ᴱ (val nil) H
binOpEquality :
{H x y}
---------------------------------------------------------------------------
H (binexp (val x) BinaryOperator.≡ (val y)) ⟶ᴱ (val (evalEqOp x y)) H
binOp₀ : {H op v₁ v₂ w}
binOpInequality :
{H x y}
----------------------------------------------------------------------------
H (binexp (val x) BinaryOperator.≅ (val y)) ⟶ᴱ (val (evalNeqOp x y)) H
v₁ op v₂ w
--------------------------------------------------
H (binexp (val v₁) op (val v₂)) ⟶ᴱ (val w) H
binOpNumbers :
{H x op y}
-----------------------------------------------------------------------
H (binexp (number x) op (number y)) ⟶ᴱ (val (evalNumOp x op y)) H
binOp₁ : {H H x x op y}
binOp₁ :
{H H x x op y}
H x ⟶ᴱ x H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
binOp₂ :
{H H x op y y}
binOp₂ : {H H x op y y}
H y ⟶ᴱ y H
---------------------------------------------
H (binexp x op y) ⟶ᴱ (binexp x op y) H
data _⊢_⟶ᴮ_⊣_ where
local : {H H x M M B}
@ -132,16 +110,16 @@ data _⊢_⟶ᴮ_⊣_ where
-------------------------------------------------
H (local x M B) ⟶ᴮ (local x M B) H
subst : {H x v B}
subst : v {H x B}
------------------------------------------------------
H (local x val v B) ⟶ᴮ (B [ v / name x ]ᴮ) H
function : {H H a F B C}
function : a {H H F B C}
H H a (function F is C end)
--------------------------------------------------------------
H (function F is C end B) ⟶ᴮ (B [ addr a / fun F ]ᴮ) H
H (function F is C end B) ⟶ᴮ (B [ addr a / name(fun F) ]ᴮ) H
return : {H H M M B}

View File

@ -1,15 +1,16 @@
{-# OPTIONS --rewriting #-}
module Luau.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Luau.Heap using (Heap; )
open import Luau.Syntax using (Block; return; _∙_; done)
open import Luau.Syntax using (Block; val; return; _∙_; done)
open import Luau.OpSem using (_⊢_⟶*_⊣_; refl; step)
open import Luau.Value using (val)
open import Properties.Step using (stepᴮ; step; return; done; error)
open import Luau.RuntimeError using (RuntimeErrorᴮ)
data RunResult {a} (H : Heap a) (B : Block a) : Set where
return : V {B H} (H B ⟶* (return (val V) B) H) RunResult H B
return : v {B H} (H B ⟶* (return (val v) B) H) RunResult H B
done : {H} (H B ⟶* done H) RunResult H B
error : {B H} (RuntimeErrorᴮ H B) (H B ⟶* B H) RunResult H B

View File

@ -1,27 +1,40 @@
{-# OPTIONS --rewriting #-}
module Luau.RuntimeError where
open import Agda.Builtin.Equality using (_≡_)
open import Luau.Heap using (Heap; _[_])
open import FFI.Data.Maybe using (just; nothing)
open import FFI.Data.String using (String)
open import Luau.Syntax using (Block; Expr; nil; var; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; binexp)
open import Luau.RuntimeType using (RuntimeType; valueType)
open import Luau.Value using (val)
open import Luau.Syntax using (BinaryOperator; Block; Expr; nil; var; val; addr; block_is_end; _$_; local_←_; return; done; _∙_; number; binexp; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (RuntimeType; valueType; function; number)
open import Properties.Equality using (_≢_)
data BinOpError : BinaryOperator RuntimeType Set where
+ : {t} (t number) BinOpError + t
- : {t} (t number) BinOpError - t
* : {t} (t number) BinOpError * t
/ : {t} (t number) BinOpError / t
< : {t} (t number) BinOpError < t
> : {t} (t number) BinOpError > t
<= : {t} (t number) BinOpError <= t
>= : {t} (t number) BinOpError >= t
data RuntimeErrorᴮ {a} (H : Heap a) : Block a Set
data RuntimeErrorᴱ {a} (H : Heap a) : Expr a Set
data RuntimeErrorᴱ H where
TypeMismatch : t v (t valueType v) RuntimeErrorᴱ H (val v)
UnboundVariable : x RuntimeErrorᴱ H (var x)
SEGV : a (H [ a ] nothing) RuntimeErrorᴱ H (addr a)
FunctionMismatch : v w (function valueType v) RuntimeErrorᴱ H (val v $ val w)
BinOpMismatch₁ : v w {op} (BinOpError op (valueType v)) RuntimeErrorᴱ H (binexp (val v) op (val w))
BinOpMismatch₂ : v w {op} (BinOpError op (valueType w)) RuntimeErrorᴱ H (binexp (val v) op (val w))
UnboundVariable : {x} RuntimeErrorᴱ H (var x)
SEGV : {a} (H [ a ] nothing) RuntimeErrorᴱ H (val (addr a))
app₁ : {M N} RuntimeErrorᴱ H M RuntimeErrorᴱ H (M $ N)
app₂ : {M N} RuntimeErrorᴱ H N RuntimeErrorᴱ H (M $ N)
block : b {B} RuntimeErrorᴮ H B RuntimeErrorᴱ H (block b is B end)
block : {b B} RuntimeErrorᴮ H B RuntimeErrorᴱ H (block b is B end)
bin₁ : {M N op} RuntimeErrorᴱ H M RuntimeErrorᴱ H (binexp M op N)
bin₂ : {M N op} RuntimeErrorᴱ H N RuntimeErrorᴱ H (binexp M op N)
data RuntimeErrorᴮ H where
local : x {M B} RuntimeErrorᴱ H M RuntimeErrorᴮ H (local x M B)
local : {x M B} RuntimeErrorᴱ H M RuntimeErrorᴮ H (local x M B)
return : {M B} RuntimeErrorᴱ H M RuntimeErrorᴮ H (return M B)

View File

@ -1,27 +1,29 @@
{-# OPTIONS --rewriting #-}
module Luau.RuntimeError.ToString where
open import Agda.Builtin.Float using (primShowFloat)
open import FFI.Data.String using (String; _++_)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; TypeMismatch; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeType.ToString using (runtimeTypeToString)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Syntax.ToString using (exprToString)
open import Luau.Syntax.ToString using (valueToString; exprToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Value.ToString using (valueToString)
open import Luau.Syntax using (name; _$_)
open import Luau.Syntax using (var; val; addr; binexp; block_is_end; local_←_; return; _∙_; name; _$_)
errToStringᴱ : {a H B} RuntimeErrorᴱ {a} H B String
errToStringᴮ : {a H B} RuntimeErrorᴮ {a} H B String
errToStringᴱ : {a H} M RuntimeErrorᴱ {a} H M String
errToStringᴮ : {a H} B RuntimeErrorᴮ {a} H B String
errToStringᴱ (UnboundVariable x) = "variable " ++ varToString x ++ " is unbound"
errToStringᴱ (SEGV a x) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (app₁ E) = errToStringᴱ E
errToStringᴱ (app₂ E) = errToStringᴱ E
errToStringᴱ (bin₁ E) = errToStringᴱ E
errToStringᴱ (bin₂ E) = errToStringᴱ E
errToStringᴱ (block b E) = errToStringᴮ E ++ "\n in call of function " ++ varToString b
errToStringᴱ (TypeMismatch t v _) = "value " ++ valueToString v ++ " is not a " ++ runtimeTypeToString t
errToStringᴮ (local x E) = errToStringᴱ E ++ "\n in definition of " ++ varToString (name x)
errToStringᴮ (return E) = errToStringᴱ E ++ "\n in return statement"
errToStringᴱ (var x) (UnboundVariable) = "variable " ++ varToString x ++ " is unbound"
errToStringᴱ (val (addr a)) (SEGV p) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (M $ N) (FunctionMismatch v w p) = "value " ++ (valueToString v) ++ " is not a function"
errToStringᴱ (M $ N) (app₁ E) = errToStringᴱ M E
errToStringᴱ (M $ N) (app₂ E) = errToStringᴱ N E
errToStringᴱ (binexp M op N) (BinOpMismatch₁ v w p) = "value " ++ (valueToString v) ++ " is not a number"
errToStringᴱ (binexp M op N) (BinOpMismatch₂ v w p) = "value " ++ (valueToString w) ++ " is not a number"
errToStringᴱ (binexp M op N) (bin₁ E) = errToStringᴱ M E
errToStringᴱ (binexp M op N) (bin₂ E) = errToStringᴱ N E
errToStringᴱ (block b is B end) (block E) = errToStringᴮ B E ++ "\n in call of function " ++ varToString (name b)
errToStringᴮ (local x M B) (local E) = errToStringᴱ M E ++ "\n in definition of " ++ varToString (name x)
errToStringᴮ (return M B) (return E) = errToStringᴱ M E ++ "\n in return statement"

View File

@ -1,6 +1,6 @@
module Luau.RuntimeType where
open import Luau.Value using (Value; nil; addr; number; bool)
open import Luau.Syntax using (Value; nil; addr; number; bool)
data RuntimeType : Set where
function : RuntimeType
@ -10,6 +10,6 @@ data RuntimeType : Set where
valueType : Value RuntimeType
valueType nil = nil
valueType (addr x) = function
valueType (number x) = number
valueType (bool _) = boolean
valueType (addr a) = function
valueType (number n) = number
valueType (bool b) = boolean

View File

@ -0,0 +1,205 @@
{-# OPTIONS --rewriting #-}
module Luau.StrictMode where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; var; binexp; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; +; -; *; /; <; >; <=; >=)
open import Luau.Type using (Type; strict; nil; number; _⇒_; tgt)
open import Luau.Heap using (Heap; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; ⊢ᴴ_; ⊢ᴼ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; var; addr; app; binexp; block; return; local; function)
open import Properties.Equality using (_≢_)
open import Properties.TypeCheck(strict) using (typeCheckᴮ)
open import Properties.Product using (_,_)
src : Type Type
src = Luau.Type.src strict
data BinOpWarning : BinaryOperator Type Set where
+ : {T} (T number) BinOpWarning + T
- : {T} (T number) BinOpWarning - T
* : {T} (T number) BinOpWarning * T
/ : {T} (T number) BinOpWarning / T
< : {T} (T number) BinOpWarning < T
> : {T} (T number) BinOpWarning > T
<= : {T} (T number) BinOpWarning <= T
>= : {T} (T number) BinOpWarning >= T
data Warningᴱ (H : Heap yes) {Γ} : {M T} (Γ ⊢ᴱ M T) Set
data Warningᴮ (H : Heap yes) {Γ} : {B T} (Γ ⊢ᴮ B T) Set
data Warningᴱ H {Γ} where
UnallocatedAddress : {a T}
(H [ a ]ᴴ nothing)
---------------------
Warningᴱ H (addr {a} T)
UnboundVariable : {x T p}
(Γ [ x ]ⱽ nothing)
------------------------
Warningᴱ H (var {x} {T} p)
FunctionCallMismatch : {M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
(src T U)
-----------------
Warningᴱ H (app D₁ D₂)
app₁ : {M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
Warningᴱ H D₁
-----------------
Warningᴱ H (app D₁ D₂)
app₂ : {M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
Warningᴱ H D₂
-----------------
Warningᴱ H (app D₁ D₂)
BinOpMismatch₁ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
BinOpWarning op T
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
BinOpMismatch₂ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
BinOpWarning op U
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
bin₁ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
Warningᴱ H D₁
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
bin₂ : {op M N T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴱ N U}
Warningᴱ H D₂
------------------------------
Warningᴱ H (binexp {op} D₁ D₂)
FunctionDefnMismatch : {f x B T U V} {D : (Γ x T) ⊢ᴮ B V}
(U V)
-------------------------
Warningᴱ H (function {f} {U = U} D)
function₁ : {f x B T U V} {D : (Γ x T) ⊢ᴮ B V}
Warningᴮ H D
-------------------------
Warningᴱ H (function {f} {U = U} D)
BlockMismatch : {b B T U} {D : Γ ⊢ᴮ B U}
(T U)
------------------------------
Warningᴱ H (block {b} {T = T} D)
block₁ : {b B T U} {D : Γ ⊢ᴮ B U}
Warningᴮ H D
------------------------------
Warningᴱ H (block {b} {T = T} D)
data Warningᴮ H {Γ} where
return : {M B T U} {D₁ : Γ ⊢ᴱ M T} {D₂ : Γ ⊢ᴮ B U}
Warningᴱ H D₁
------------------
Warningᴮ H (return D₁ D₂)
LocalVarMismatch : {x M B T U V} {D₁ : Γ ⊢ᴱ M U} {D₂ : (Γ x T) ⊢ᴮ B V}
(T U)
--------------------
Warningᴮ H (local D₁ D₂)
local₁ : {x M B T U V} {D₁ : Γ ⊢ᴱ M U} {D₂ : (Γ x T) ⊢ᴮ B V}
Warningᴱ H D₁
--------------------
Warningᴮ H (local D₁ D₂)
local₂ : {x M B T U V} {D₁ : Γ ⊢ᴱ M U} {D₂ : (Γ x T) ⊢ᴮ B V}
Warningᴮ H D₂
--------------------
Warningᴮ H (local D₁ D₂)
FunctionDefnMismatch : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
(U V)
-------------------------------------
Warningᴮ H (function D₁ D₂)
function₁ : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
Warningᴮ H D₁
--------------------
Warningᴮ H (function D₁ D₂)
function₂ : {f x B C T U V W} {D₁ : (Γ x T) ⊢ᴮ C V} {D₂ : (Γ f (T U)) ⊢ᴮ B W}
Warningᴮ H D₂
--------------------
Warningᴮ H (function D₁ D₂)
data Warningᴼ (H : Heap yes) : {V} (⊢ᴼ V) Set where
FunctionDefnMismatch : {f x B T U V} {D : (x T) ⊢ᴮ B V}
(U V)
---------------------------------
Warningᴼ H (function {f} {U = U} D)
function₁ : {f x B T U V} {D : (x T) ⊢ᴮ B V}
Warningᴮ H D
---------------------------------
Warningᴼ H (function {f} {U = U} D)
data Warningᴴ H (D : ⊢ᴴ H) : Set where
addr : a {O}
(p : H [ a ]ᴴ O)
Warningᴼ H (D a p)
---------------
Warningᴴ H D
data Warningᴴᴱ H {Γ M T} : (Γ ⊢ᴴᴱ H M T) Set where
heap : {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M T}
Warningᴴ H D₁
-----------------
Warningᴴᴱ H (D₁ , D₂)
expr : {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴱ M T}
Warningᴱ H D₂
---------------------
Warningᴴᴱ H (D₁ , D₂)
data Warningᴴᴮ H {Γ B T} : (Γ ⊢ᴴᴮ H B T) Set where
heap : {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B T}
Warningᴴ H D₁
-----------------
Warningᴴᴮ H (D₁ , D₂)
block : {D₁ : ⊢ᴴ H} {D₂ : Γ ⊢ᴮ B T}
Warningᴮ H D₂
---------------------
Warningᴴᴮ H (D₁ , D₂)

View File

@ -0,0 +1,39 @@
{-# OPTIONS --rewriting #-}
module Luau.StrictMode.ToString where
open import FFI.Data.String using (String; _++_)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; FunctionDefnMismatch; BlockMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; block₁; return; LocalVarMismatch; local₁; local₂; function₁; function₂; heap; expr; block; addr)
open import Luau.Syntax using (Expr; val; yes; var; var_∈_; _⟨_⟩∈_; _$_; addr; number; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name)
open import Luau.Type using (strict)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Type.ToString using (typeToString)
open import Luau.Syntax.ToString using (binOpToString)
warningToStringᴱ : {H Γ T} M {D : Γ ⊢ᴱ M T} Warningᴱ H D String
warningToStringᴮ : {H Γ T} B {D : Γ ⊢ᴮ B T} Warningᴮ H D String
warningToStringᴱ (var x) (UnboundVariable p) = "Unbound variable " ++ varToString x
warningToStringᴱ (val (addr a)) (UnallocatedAddress p) = "Unallocated adress " ++ addrToString a
warningToStringᴱ (M $ N) (FunctionCallMismatch {T = T} {U = U} p) = "Function has type " ++ typeToString T ++ " but argument has type " ++ typeToString U
warningToStringᴱ (M $ N) (app₁ W) = warningToStringᴱ M W
warningToStringᴱ (M $ N) (app₂ W) = warningToStringᴱ N W
warningToStringᴱ (function f var x T ⟩∈ U is B end) (FunctionDefnMismatch {V = V} p) = "Function expresion " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V
warningToStringᴱ (function f var x T ⟩∈ U is B end) (function₁ W) = warningToStringᴮ B W ++ "\n in function expression " ++ varToString f
warningToStringᴱ block var b T is B end (BlockMismatch {U = U} p) = "Block " ++ varToString b ++ " has type " ++ typeToString T ++ " but body returns " ++ typeToString U
warningToStringᴱ block var b T is B end (block₁ W) = warningToStringᴮ B W ++ "\n in block " ++ varToString b
warningToStringᴱ (binexp M op N) (BinOpMismatch₁ {T = T} p) = "Binary operator " ++ binOpToString op ++ " lhs has type " ++ typeToString T
warningToStringᴱ (binexp M op N) (BinOpMismatch₂ {U = U} p) = "Binary operator " ++ binOpToString op ++ " rhs has type " ++ typeToString U
warningToStringᴱ (binexp M op N) (bin₁ W) = warningToStringᴱ M W
warningToStringᴱ (binexp M op N) (bin₂ W) = warningToStringᴱ N W
warningToStringᴮ (function f var x T ⟩∈ U is C end B) (FunctionDefnMismatch {V = V} p) = "Function declaration " ++ varToString f ++ " has return type " ++ typeToString U ++ " but body returns " ++ typeToString V
warningToStringᴮ (function f var x T ⟩∈ U is C end B) (function₁ W) = warningToStringᴮ C W ++ "\n in function declaration " ++ varToString f
warningToStringᴮ (function f var x T ⟩∈ U is C end B) (function₂ W) = warningToStringᴮ B W
warningToStringᴮ (local var x T M B) (LocalVarMismatch {U = U} p) = "Local variable " ++ varToString x ++ " has type " ++ typeToString T ++ " but expression has type " ++ typeToString U
warningToStringᴮ (local var x T M B) (local₁ W) = warningToStringᴱ M W ++ "\n in local variable declaration " ++ varToString x
warningToStringᴮ (local var x T M B) (local₂ W) = warningToStringᴮ B W
warningToStringᴮ (return M B) (return W) = warningToStringᴱ M W ++ "\n in return statement"

View File

@ -1,7 +1,6 @@
module Luau.Substitution where
open import Luau.Syntax using (Expr; Stat; Block; nil; true; false; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; _⟨_⟩ ; name; fun; arg; number; binexp)
open import Luau.Value using (Value; val)
open import Luau.Syntax using (Value; Expr; Stat; Block; val; nil; bool; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; _⟨_⟩ ; name; fun; arg; number; binexp)
open import Luau.Var using (Var; _≡ⱽ_)
open import Properties.Dec using (Dec; yes; no)
@ -10,18 +9,14 @@ _[_/_]ᴮ : ∀ {a} → Block a → Value → Var → Block a
var_[_/_]ᴱwhenever_ : {a P} Var Value Var (Dec P) Expr a
_[_/_]ᴮunless_ : {a P} Block a Value Var (Dec P) Block a
nil [ v / x ]ᴱ = nil
true [ v / x ]ᴱ = true
false [ v / x ]ᴱ = false
val w [ v / x ]ᴱ = val w
var y [ v / x ]ᴱ = var y [ v / x ]ᴱwhenever (x ≡ⱽ y)
addr a [ v / x ]ᴱ = addr a
(number y) [ v / x ]ᴱ = number y
(M $ N) [ v / x ]ᴱ = (M [ v / x ]ᴱ) $ (N [ v / x ]ᴱ)
function F is C end [ v / x ]ᴱ = function F is C [ v / x ]ᴮunless (x ≡ⱽ name(arg F)) end
block b is C end [ v / x ]ᴱ = block b is C [ v / x ]ᴮ end
(binexp e₁ op e₂) [ v / x ]ᴱ = binexp (e₁ [ v / x ]ᴱ) op (e₂ [ v / x ]ᴱ)
(function F is C end B) [ v / x ]ᴮ = function F is (C [ v / x ]ᴮunless (x ≡ⱽ name(arg F))) end (B [ v / x ]ᴮunless (x ≡ⱽ fun F))
(function F is C end B) [ v / x ]ᴮ = function F is (C [ v / x ]ᴮunless (x ≡ⱽ name(arg F))) end (B [ v / x ]ᴮunless (x ≡ⱽ name(fun F)))
(local y M B) [ v / x ]ᴮ = local y (M [ v / x ]ᴱ) (B [ v / x ]ᴮunless (x ≡ⱽ name y))
(return M B) [ v / x ]ᴮ = return (M [ v / x ]ᴱ) (B [ v / x ]ᴮ)
done [ v / x ]ᴮ = done

View File

@ -1,11 +1,12 @@
module Luau.Syntax where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Bool using (Bool; true; false)
open import Agda.Builtin.Float using (Float)
open import Properties.Dec using ()
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Type using (Type)
open import FFI.Data.Maybe using (Maybe; just; nothing)
infixr 5 _∙_
@ -25,9 +26,9 @@ data FunDec : Annotated → Set where
_⟨_⟩∈_ : {a} Var VarDec a Type FunDec a
_⟨_⟩ : Var VarDec maybe FunDec maybe
fun : {a} FunDec a Var
fun (f x ⟩∈ T) = f
fun (f x ) = f
fun : {a} FunDec a VarDec a
fun (f x ⟩∈ T) = (var f T)
fun (f x ) = (var f)
arg : {a} FunDec a VarDec a
arg (f x ⟩∈ T) = x
@ -40,10 +41,16 @@ data BinaryOperator : Set where
/ : BinaryOperator
< : BinaryOperator
> : BinaryOperator
: BinaryOperator
: BinaryOperator
: BinaryOperator
: BinaryOperator
== : BinaryOperator
~= : BinaryOperator
<= : BinaryOperator
>= : BinaryOperator
data Value : Set where
nil : Value
addr : Addr Value
number : Float Value
bool : Bool Value
data Block (a : Annotated) : Set
data Stat (a : Annotated) : Set
@ -59,13 +66,42 @@ data Stat a where
return : Expr a Stat a
data Expr a where
nil : Expr a
true : Expr a
false : Expr a
var : Var Expr a
addr : Addr Expr a
val : Value Expr a
_$_ : Expr a Expr a Expr a
function_is_end : FunDec a Block a Expr a
block_is_end : Var Block a Expr a
number : Float Expr a
block_is_end : VarDec a Block a Expr a
binexp : Expr a BinaryOperator Expr a Expr a
isAnnotatedᴱ : {a} Expr a Maybe (Expr yes)
isAnnotatedᴮ : {a} Block a Maybe (Block yes)
isAnnotatedᴱ (var x) = just (var x)
isAnnotatedᴱ (val v) = just (val v)
isAnnotatedᴱ (M $ N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (M $ N) | just M | just N = just (M $ N)
isAnnotatedᴱ (M $ N) | _ | _ = nothing
isAnnotatedᴱ (function f var x T ⟩∈ U is B end) with isAnnotatedᴮ B
isAnnotatedᴱ (function f var x T ⟩∈ U is B end) | just B = just (function f var x T ⟩∈ U is B end)
isAnnotatedᴱ (function f var x T ⟩∈ U is B end) | _ = nothing
isAnnotatedᴱ (function _ is B end) = nothing
isAnnotatedᴱ (block var b T is B end) with isAnnotatedᴮ B
isAnnotatedᴱ (block var b T is B end) | just B = just (block var b T is B end)
isAnnotatedᴱ (block var b T is B end) | _ = nothing
isAnnotatedᴱ (block _ is B end) = nothing
isAnnotatedᴱ (binexp M op N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (binexp M op N) | just M | just N = just (binexp M op N)
isAnnotatedᴱ (binexp M op N) | _ | _ = nothing
isAnnotatedᴮ (function f var x T ⟩∈ U is C end B) with isAnnotatedᴮ B | isAnnotatedᴮ C
isAnnotatedᴮ (function f var x T ⟩∈ U is C end B) | just B | just C = just (function f var x T ⟩∈ U is C end B)
isAnnotatedᴮ (function f var x T ⟩∈ U is C end B) | _ | _ = nothing
isAnnotatedᴮ (function _ is C end B) = nothing
isAnnotatedᴮ (local var x T M B) with isAnnotatedᴱ M | isAnnotatedᴮ B
isAnnotatedᴮ (local var x T M B) | just M | just B = just (local var x T M B)
isAnnotatedᴮ (local var x T M B) | _ | _ = nothing
isAnnotatedᴮ (local _ M B) = nothing
isAnnotatedᴮ (return M B) with isAnnotatedᴱ M | isAnnotatedᴮ B
isAnnotatedᴮ (return M B) | just M | just B = just (return M B)
isAnnotatedᴮ (return M B) | _ | _ = nothing
isAnnotatedᴮ done = just done

View File

@ -1,6 +1,8 @@
{-# OPTIONS --rewriting #-}
module Luau.Syntax.FromJSON where
open import Luau.Syntax using (Block; Stat ; Expr; nil; _$_; var; var_∈_; function_is_end; _⟨_⟩; local_←_; return; done; _∙_; maybe; VarDec; number; binexp; BinaryOperator; +; -; *; /; ≡; ≅; <; >; ≤; )
open import Luau.Syntax using (Block; Stat ; Expr; _$_; val; nil; bool; number; var; var_∈_; function_is_end; _⟨_⟩; _⟨_⟩∈_; local_←_; return; done; _∙_; maybe; VarDec; binexp; BinaryOperator; +; -; *; /; ==; ~=; <; >; <=; >=)
open import Luau.Type.FromJSON using (typeFromJSON)
open import Agda.Builtin.List using (List; _∷_; [])
@ -26,6 +28,8 @@ vars = fromString "vars"
op = fromString "op"
left = fromString "left"
right = fromString "right"
returnAnnotation = fromString "returnAnnotation"
types = fromString "types"
data Lookup : Set where
_,_ : String Value Lookup
@ -49,22 +53,22 @@ blockFromJSON : Value → Either String (Block maybe)
blockFromArray : Array Either String (Block maybe)
binOpFromJSON (string s) = binOpFromString s
binOpFromJSON val = Left "Binary operator not a string"
binOpFromJSON _ = Left "Binary operator not a string"
binOpFromString "Add" = Right +
binOpFromString "Sub" = Right -
binOpFromString "Mul" = Right *
binOpFromString "Div" = Right /
binOpFromString "CompareEq" = Right
binOpFromString "CompareNe" = Right
binOpFromString "CompareEq" = Right ==
binOpFromString "CompareNe" = Right ~=
binOpFromString "CompareLt" = Right <
binOpFromString "CompareLe" = Right
binOpFromString "CompareLe" = Right <=
binOpFromString "CompareGt" = Right >
binOpFromString "CompareGe" = Right
binOpFromString "CompareGe" = Right >=
binOpFromString s = Left ("'" ++ s ++ "' is not a valid operator")
varDecFromJSON (object arg) = varDecFromObject arg
varDecFromJSON val = Left "VarDec not an object"
varDecFromJSON _ = Left "VarDec not an object"
varDecFromObject obj with lookup name obj | lookup type obj
varDecFromObject obj | just (string name) | nothing = Right (var name)
@ -76,7 +80,7 @@ varDecFromObject obj | just _ | _ = Left "AstLocal name is not a string"
varDecFromObject obj | nothing | _ = Left "AstLocal missing name"
exprFromJSON (object obj) = exprFromObject obj
exprFromJSON val = Left "AstExpr not an object"
exprFromJSON _ = Left "AstExpr not an object"
exprFromObject obj with lookup type obj
exprFromObject obj | just (string "AstExprCall") with lookup func obj | lookup args obj
@ -89,29 +93,37 @@ exprFromObject obj | just (string "AstExprCall") | just value | just (array arr)
exprFromObject obj | just (string "AstExprCall") | just value | just _ = Left ("AstExprCall args not an array")
exprFromObject obj | just (string "AstExprCall") | nothing | _ = Left ("AstExprCall missing func")
exprFromObject obj | just (string "AstExprCall") | _ | nothing = Left ("AstExprCall missing args")
exprFromObject obj | just (string "AstExprConstantNil") = Right nil
exprFromObject obj | just (string "AstExprFunction") with lookup args obj | lookup body obj
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue with head arr | blockFromJSON blockValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B with varDecFromJSON argValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B | Right arg = Right (function "" arg is B end)
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just argValue | Right B | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | nothing | Right B = Left "Unsupported AstExprFunction empty args"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | _ | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just _ | just _ = Left "AstExprFunction args not an array"
exprFromObject obj | just (string "AstExprFunction") | nothing | _ = Left "AstExprFunction missing args"
exprFromObject obj | just (string "AstExprFunction") | _ | nothing = Left "AstExprFunction missing body"
exprFromObject obj | just (string "AstExprConstantNil") = Right (val nil)
exprFromObject obj | just (string "AstExprFunction") with lookup args obj | lookup body obj | lookup returnAnnotation obj
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn with head arr | blockFromJSON blockValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | just argValue | Right B with varDecFromJSON argValue
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg with lookup types rtnObj
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) with head rtnTypes
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType with typeFromJSON rtnType
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | just rtnType | Right T = Right (function "" arg ⟩∈ T is B end)
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just (array rtnTypes) | nothing = Right (function "" arg is B end)
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | just _ = Left "returnAnnotation types not an array"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just (object rtnObj) | just argValue | Right B | Right arg | nothing = Left "returnAnnotation missing types"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | just _ | just argValue | Right B | Right arg = Left "returnAnnotation not an object"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | nothing | just argValue | Right B | Right arg = Right (function "" arg is B end)
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | just argValue | Right B | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | nothing | Right B = Left "Unsupported AstExprFunction empty args"
exprFromObject obj | just (string "AstExprFunction") | just (array arr) | just blockValue | rtn | _ | Left err = Left err
exprFromObject obj | just (string "AstExprFunction") | just _ | just _ | rtn = Left "AstExprFunction args not an array"
exprFromObject obj | just (string "AstExprFunction") | nothing | _ | rtn = Left "AstExprFunction missing args"
exprFromObject obj | just (string "AstExprFunction") | _ | nothing | rtn = Left "AstExprFunction missing body"
exprFromObject obj | just (string "AstExprLocal") with lookup lokal obj
exprFromObject obj | just (string "AstExprLocal") | just x with varDecFromJSON x
exprFromObject obj | just (string "AstExprLocal") | just x | Right x = Right (var (Luau.Syntax.name x))
exprFromObject obj | just (string "AstExprLocal") | just x | Left err = Left err
exprFromObject obj | just (string "AstExprLocal") | nothing = Left "AstExprLocal missing local"
exprFromObject obj | just (string "AstExprConstantNumber") with lookup value obj
exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (number (toFloat x))
exprFromObject obj | just (string "AstExprConstantNumber") | just (FFI.Data.Aeson.Value.number x) = Right (val (number (toFloat x)))
exprFromObject obj | just (string "AstExprConstantNumber") | just _ = Left "AstExprConstantNumber value is not a number"
exprFromObject obj | just (string "AstExprConstantNumber") | nothing = Left "AstExprConstantNumber missing value"
exprFromObject obj | just (string "AstExprConstantBool") with lookup value obj
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool true) = Right Expr.true
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool false) = Right Expr.false
exprFromObject obj | just (string "AstExprConstantBool") | just (FFI.Data.Aeson.Value.bool b) = Right (val (bool b))
exprFromObject obj | just (string "AstExprConstantBool") | just _ = Left "AstExprConstantBool value is not a bool"
exprFromObject obj | just (string "AstExprConstantBool") | nothing = Left "AstExprConstantBool missing value"
exprFromObject obj | just (string "AstExprBinary") with lookup op obj | lookup left obj | lookup right obj
@ -147,6 +159,7 @@ statFromObject obj | just(string "AstStatLocal") | nothing | _ = Left "AstStatLo
statFromObject obj | just(string "AstStatLocalFunction") with lookup name obj | lookup func obj
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value with varDecFromJSON fnName | exprFromJSON value
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Right fnVar | Right (function "" x is B end) = Right (function (Luau.Syntax.name fnVar) x is B end)
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Right fnVar | Right (function "" x ⟩∈ T is B end) = Right (function (Luau.Syntax.name fnVar) x ⟩∈ T is B end)
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | Left err | _ = Left err
statFromObject obj | just(string "AstStatLocalFunction") | just fnName | just value | _ | Left err = Left err
statFromObject obj | just(string "AstStatLocalFunction") | just _ | just _ | Right _ | Right _ = Left "AstStatLocalFunction func is not an AstExprFunction"

View File

@ -1,7 +1,8 @@
module Luau.Syntax.ToString where
open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.Float using (primShowFloat)
open import Luau.Syntax using (Block; Stat; Expr; VarDec; FunDec; nil; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; <; >; ≡; ≅; ≤; ≥; binexp; true; false)
open import Luau.Syntax using (Value; Block; Stat; Expr; VarDec; FunDec; nil; bool; val; var; var_∈_; addr; _$_; function_is_end; return; local_←_; _∙_; done; block_is_end; _⟨_⟩; _⟨_⟩∈_; number; BinaryOperator; +; -; *; /; <; >; ==; ~=; <=; >=; binexp)
open import FFI.Data.String using (String; _++_)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Type.ToString using (typeToString)
@ -24,19 +25,24 @@ binOpToString * = "*"
binOpToString / = "/"
binOpToString < = "<"
binOpToString > = ">"
binOpToString = "=="
binOpToString = "~="
binOpToString = "<="
binOpToString = ">="
binOpToString == = "=="
binOpToString ~= = "~="
binOpToString <= = "<="
binOpToString >= = ">="
valueToString : Value String
valueToString nil = "nil"
valueToString (addr a) = addrToString a
valueToString (number x) = primShowFloat x
valueToString (bool false) = "false"
valueToString (bool true) = "true"
exprToString : {a} String Expr a String
statToString : {a} String Stat a String
blockToString : {a} String Block a String
exprToString lb nil =
"nil"
exprToString lb (addr a) =
addrToString(a)
exprToString lb (val v) =
valueToString(v)
exprToString lb (var x) =
varToString(x)
exprToString lb (M $ N) =
@ -46,13 +52,10 @@ exprToString lb (function F is B end) =
" " ++ (blockToString (lb ++ " ") B) ++ lb ++
"end"
exprToString lb (block b is B end) =
"(" ++ b ++ "()" ++ lb ++
"(" ++ varDecToString b ++ "()" ++ lb ++
" " ++ (blockToString (lb ++ " ") B) ++ lb ++
"end)()"
exprToString lb (number x) = primShowFloat x
exprToString lb (binexp x op y) = exprToString lb x ++ " " ++ binOpToString op ++ " " ++ exprToString lb y
exprToString lb true = "true"
exprToString lb false = "false"
statToString lb (function F is B end) =
"local " ++ funDecToString F ++ lb ++

View File

@ -1,5 +1,9 @@
module Luau.Type where
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (cong)
open import FFI.Data.Maybe using (Maybe; just; nothing)
data Type : Set where
@ -7,18 +11,132 @@ data Type : Set where
_⇒_ : Type Type Type
none : Type
any : Type
boolean : Type
number : Type
__ : Type Type Type
_∩_ : Type Type Type
src : Type Type
src nil = none
src (S T) = S
src none = none
src any = any
src number = none
src (S T) = (src S) (src T)
src (S T) = (src S) (src T)
lhs : Type Type
lhs (T _) = T
lhs (T _) = T
lhs (T _) = T
lhs nil = nil
lhs none = none
lhs any = any
lhs number = number
lhs boolean = boolean
rhs : Type Type
rhs (_ T) = T
rhs (_ T) = T
rhs (_ T) = T
rhs nil = nil
rhs none = none
rhs any = any
rhs number = number
rhs boolean = boolean
_≡ᵀ_ : (T U : Type) Dec(T U)
nil ≡ᵀ nil = yes refl
nil ≡ᵀ (S T) = no (λ ())
nil ≡ᵀ none = no (λ ())
nil ≡ᵀ any = no (λ ())
nil ≡ᵀ number = no (λ ())
nil ≡ᵀ boolean = no (λ ())
nil ≡ᵀ (S T) = no (λ ())
nil ≡ᵀ (S T) = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (S T) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
(S T) ≡ᵀ none = no (λ ())
(S T) ≡ᵀ any = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
none ≡ᵀ nil = no (λ ())
none ≡ᵀ (U V) = no (λ ())
none ≡ᵀ none = yes refl
none ≡ᵀ any = no (λ ())
none ≡ᵀ number = no (λ ())
none ≡ᵀ boolean = no (λ ())
none ≡ᵀ (U V) = no (λ ())
none ≡ᵀ (U V) = no (λ ())
any ≡ᵀ nil = no (λ ())
any ≡ᵀ (U V) = no (λ ())
any ≡ᵀ none = no (λ ())
any ≡ᵀ any = yes refl
any ≡ᵀ number = no (λ ())
any ≡ᵀ boolean = no (λ ())
any ≡ᵀ (U V) = no (λ ())
any ≡ᵀ (U V) = no (λ ())
number ≡ᵀ nil = no (λ ())
number ≡ᵀ (T U) = no (λ ())
number ≡ᵀ none = no (λ ())
number ≡ᵀ any = no (λ ())
number ≡ᵀ number = yes refl
number ≡ᵀ boolean = no (λ ())
number ≡ᵀ (T U) = no (λ ())
number ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ nil = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ none = no (λ ())
boolean ≡ᵀ any = no (λ ())
boolean ≡ᵀ boolean = yes refl
boolean ≡ᵀ number = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ none = no (λ ())
(S T) ≡ᵀ any = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (S T) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ none = no (λ ())
(S T) ≡ᵀ any = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (U V) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
_≡ᴹᵀ_ : (T U : Maybe Type) Dec(T U)
nothing ≡ᴹᵀ nothing = yes refl
nothing ≡ᴹᵀ just U = no (λ ())
just T ≡ᴹᵀ nothing = no (λ ())
just T ≡ᴹᵀ just U with T ≡ᵀ U
(just T ≡ᴹᵀ just T) | yes refl = yes refl
(just T ≡ᴹᵀ just U) | no p = no (λ q p (just-inv q))
data Mode : Set where
strict : Mode
nonstrict : Mode
src : Mode Type Type
src m nil = none
src m number = none
src m boolean = none
src m (S T) = S
-- In nonstrict mode, functions are covaraiant, in strict mode they're contravariant
src strict (S T) = (src strict S) (src strict T)
src nonstrict (S T) = (src nonstrict S) (src nonstrict T)
src strict (S T) = (src strict S) (src strict T)
src nonstrict (S T) = (src nonstrict S) (src nonstrict T)
src strict none = any
src nonstrict none = none
src strict any = none
src nonstrict any = any
tgt : Type Type
tgt nil = none
@ -26,6 +144,7 @@ tgt (S ⇒ T) = T
tgt none = none
tgt any = any
tgt number = none
tgt boolean = none
tgt (S T) = (tgt S) (tgt T)
tgt (S T) = (tgt S) (tgt T)

View File

@ -1,3 +1,5 @@
{-# OPTIONS --rewriting #-}
module Luau.Type.FromJSON where
open import Luau.Type using (Type; nil; _⇒_; __; _∩_; any; number)

View File

@ -1,7 +1,7 @@
module Luau.Type.ToString where
open import FFI.Data.String using (String; _++_)
open import Luau.Type using (Type; nil; _⇒_; none; any; number; __; _∩_; normalizeOptional)
open import Luau.Type using (Type; nil; _⇒_; none; any; number; boolean; __; _∩_; normalizeOptional)
{-# TERMINATING #-}
typeToString : Type String
@ -13,6 +13,7 @@ typeToString (S ⇒ T) = "(" ++ (typeToString S) ++ ") -> " ++ (typeToString T)
typeToString none = "none"
typeToString any = "any"
typeToString number = "number"
typeToString boolean = "boolean"
typeToString (S T) with normalizeOptional(S T)
typeToString (S T) | ((S T) nil) = "(" ++ typeToString (S T) ++ ")?"
typeToString (S T) | (S nil) = typeToString S ++ "?"

View File

@ -0,0 +1,143 @@
{-# OPTIONS --rewriting #-}
open import Luau.Type using (Mode)
module Luau.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; Mode; nil; none; number; boolean; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Product using (_×_; _,_)
src : Type Type
src = Luau.Type.src m
orNone : Maybe Type Type
orNone nothing = none
orNone (just T) = T
tgtBinOp : BinaryOperator Type
tgtBinOp + = number
tgtBinOp - = number
tgtBinOp * = number
tgtBinOp / = number
tgtBinOp < = boolean
tgtBinOp > = boolean
tgtBinOp == = boolean
tgtBinOp ~= = boolean
tgtBinOp <= = boolean
tgtBinOp >= = boolean
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
data _⊢ᴮ_∈_ where
done : {Γ}
---------------
Γ ⊢ᴮ done nil
return : {M B T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴮ B U
---------------------
Γ ⊢ᴮ return M B T
local : {x M B T U V Γ}
Γ ⊢ᴱ M U
(Γ x T) ⊢ᴮ B V
--------------------------------
Γ ⊢ᴮ local var x T M B V
function : {f x B C T U V W Γ}
(Γ x T) ⊢ᴮ C V
(Γ f (T U)) ⊢ᴮ B W
-------------------------------------------------
Γ ⊢ᴮ function f var x T ⟩∈ U is C end B W
data _⊢ᴱ_∈_ where
nil : {Γ}
--------------------
Γ ⊢ᴱ (val nil) nil
var : {x T Γ}
T orNone(Γ [ x ]ⱽ)
----------------
Γ ⊢ᴱ (var x) T
addr : {a Γ} T
-----------------
Γ ⊢ᴱ val(addr a) T
number : {n Γ}
---------------------------
Γ ⊢ᴱ val(number n) number
bool : {b Γ}
--------------------------
Γ ⊢ᴱ val(bool b) boolean
app : {M N T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
function : {f x B T U V Γ}
(Γ x T) ⊢ᴮ B V
-----------------------------------------------------
Γ ⊢ᴱ (function f var x T ⟩∈ U is B end) (T U)
block : {b B T U Γ}
Γ ⊢ᴮ B U
------------------------------------
Γ ⊢ᴱ (block var b T is B end) T
binexp : {op Γ M N T U}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------------------
Γ ⊢ᴱ (binexp M op N) tgtBinOp op
data ⊢ᴼ_ : Maybe(Object yes) Set where
nothing :
---------
⊢ᴼ nothing
function : {f x T U V B}
(x T) ⊢ᴮ B V
----------------------------------------------
⊢ᴼ (just function f var x T ⟩∈ U is B end)
⊢ᴴ_ : Heap yes Set
⊢ᴴ H = a {O} (H [ a ]ᴴ O) (⊢ᴼ O)
_⊢ᴴᴱ_▷_∈_ : VarCtxt Heap yes Expr yes Type Set
(Γ ⊢ᴴᴱ H M T) = (⊢ᴴ H) × (Γ ⊢ᴱ M T)
_⊢ᴴᴮ_▷_∈_ : VarCtxt Heap yes Block yes Type Set
(Γ ⊢ᴴᴮ H B T) = (⊢ᴴ H) × (Γ ⊢ᴮ B T)

View File

@ -1,20 +0,0 @@
module Luau.Value where
open import Agda.Builtin.Bool using (Bool; true; false)
open import Agda.Builtin.Float using (Float)
open import Luau.Addr using (Addr)
open import Luau.Syntax using (Block; Expr; nil; addr; number; true; false)
open import Luau.Var using (Var)
data Value : Set where
nil : Value
addr : Addr Value
number : Float Value
bool : Bool Value
val : {a} Value Expr a
val nil = nil
val (addr a) = addr a
val (number x) = number x
val (bool false) = false
val (bool true) = true

View File

@ -1,14 +0,0 @@
module Luau.Value.ToString where
open import Agda.Builtin.String using (String)
open import Agda.Builtin.Float using (primShowFloat)
open import Agda.Builtin.Bool using (true; false)
open import Luau.Value using (Value; nil; addr; number; bool)
open import Luau.Addr.ToString using (addrToString)
valueToString : Value String
valueToString nil = "nil"
valueToString (addr a) = addrToString a
valueToString (number x) = primShowFloat x
valueToString (bool false) = "false"
valueToString (bool true) = "true"

View File

@ -4,13 +4,13 @@ open import Agda.Builtin.Bool using (true; false)
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.String using (String; primStringEquality)
open import Agda.Builtin.TrustMe using (primTrustMe)
open import Properties.Dec using (Dec; yes; no; )
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (_≢_)
Var : Set
Var = String
_≡ⱽ_ : (a b : Var) Dec (a b)
a ≡ⱽ b with primStringEquality a b
a ≡ⱽ b | false = no p where postulate p : (a b)
a ≡ⱽ b | false = no p where postulate p : (a b)
a ≡ⱽ b | true = yes primTrustMe

View File

@ -0,0 +1,43 @@
{-# OPTIONS --rewriting #-}
module Luau.VarCtxt where
open import Agda.Builtin.Equality using (_≡_)
open import Luau.Type using (Type; __; _∩_)
open import Luau.Var using (Var)
open import FFI.Data.Aeson using (KeyMap; Key; empty; unionWith; singleton; insert; delete; lookup; toString; fromString; lookup-insert; lookup-insert-not; lookup-empty; to-from; insert-swap; insert-over)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Equality using (_≢_; cong; sym; trans)
VarCtxt : Set
VarCtxt = KeyMap Type
: VarCtxt
= empty
_⋒_ : VarCtxt VarCtxt VarCtxt
_⋒_ = unionWith _∩_
_⋓_ : VarCtxt VarCtxt VarCtxt
_⋓_ = unionWith __
_[_] : VarCtxt Var Maybe Type
Γ [ x ] = lookup (fromString x) Γ
_⊝_ : VarCtxt Var VarCtxt
Γ x = delete (fromString x) Γ
_↦_ : Var Type VarCtxt
x T = singleton (fromString x) T
_⊕_↦_ : VarCtxt Var Type VarCtxt
Γ x T = insert (fromString x) T Γ
⊕-over : {Γ x y T U} (x y) ((Γ x T) y U) (Γ y U)
⊕-over p = insert-over _ _ _ _ _ (cong fromString (sym p))
⊕-swap : {Γ x y T U} (x y) ((Γ x T) y U) ((Γ y U) x T)
⊕-swap p = insert-swap _ _ _ _ _ (λ q p (trans (sym (to-from _)) (trans (cong toString (sym q) ) (to-from _))) )
⊕-lookup-miss : x y T Γ (x y) (Γ [ y ] (Γ x T) [ y ])
⊕-lookup-miss x y T Γ p = lookup-insert-not (fromString x) (fromString y) T Γ λ q p (trans (sym (to-from x)) (trans (cong toString q) (to-from y)))

View File

@ -1,3 +1,5 @@
{-# OPTIONS --rewriting #-}
module PrettyPrinter where
open import Agda.Builtin.IO using (IO)

View File

@ -1,7 +1,11 @@
{-# OPTIONS --rewriting #-}
module Properties where
import Properties.Contradiction
import Properties.Dec
import Properties.Equality
import Properties.Step
import Properties.Remember
import Properties.Step
import Properties.StrictMode
import Properties.TypeCheck

View File

@ -1,8 +1,7 @@
module Properties.Dec where
data : Set where
open import Properties.Contradiction using (¬)
data Dec(A : Set) : Set where
yes : A Dec A
no : (A ) Dec A
no : ¬ A Dec A

View File

@ -0,0 +1,14 @@
module Properties.Product where
infixr 5 _×_ _,_
record Σ {A : Set} (B : A Set) : Set where
constructor _,_
field fst : A
field snd : B fst
open Σ public
_×_ : Set Set Set
A × B = Σ (λ (a : A) B)

View File

@ -1,24 +1,91 @@
{-# OPTIONS --rewriting #-}
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess)
open import Agda.Builtin.Bool using (true; false)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; true; false; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; )
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOpNumbers; evalNumOp; binOp₁; binOp₂; evalEqOp; evalNeqOp; binOpEquality; binOpInequality)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; TypeMismatch; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂)
open import Luau.RuntimeType using (function; number)
open import Luau.Syntax using (Block; Expr; nil; var; val; addr; bool; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; -; *; /; <; >; <=; >=; ==; ~=)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOp₀; binOp₁; binOp₂; +; -; *; /; <; >; <=; >=; ==; ~=; evalEqOp; evalNeqOp)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (valueType; function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val; number; bool)
open import Properties.Remember using (remember; _,_)
open import Utility.Bool using (not; _or_)
data BinOpStepResult v op w : Set where
step : x (v op w x) BinOpStepResult v op w
error₁ : BinOpError op (valueType(v)) BinOpStepResult v op w
error₂ : BinOpError op (valueType(w)) BinOpStepResult v op w
binOpStep : v op w BinOpStepResult v op w
binOpStep nil + w = error₁ (+ (λ ()))
binOpStep (addr a) + w = error₁ (+ (λ ()))
binOpStep (number m) + nil = error₂ (+ (λ ()))
binOpStep (number m) + (addr a) = error₂ (+ (λ ()))
binOpStep (number m) + (number n) = step (number (primFloatPlus m n)) (+ m n)
binOpStep (number m) + (bool b) = error₂ (+ (λ ()))
binOpStep (bool b) + w = error₁ (+ (λ ()))
binOpStep nil - w = error₁ (- (λ ()))
binOpStep (addr a) - w = error₁ (- (λ ()))
binOpStep (number x) - nil = error₂ (- (λ ()))
binOpStep (number x) - (addr a) = error₂ (- (λ ()))
binOpStep (number x) - (number n) = step (number (primFloatMinus x n)) (- x n)
binOpStep (number x) - (bool b) = error₂ (- (λ ()))
binOpStep (bool b) - w = error₁ (- (λ ()))
binOpStep nil * w = error₁ (* (λ ()))
binOpStep (addr a) * w = error₁ (* (λ ()))
binOpStep (number m) * nil = error₂ (* (λ ()))
binOpStep (number m) * (addr a) = error₂ (* (λ ()))
binOpStep (number m) * (number n) = step (number (primFloatDiv m n)) (* m n)
binOpStep (number m) * (bool b) = error₂ (* (λ ()))
binOpStep (bool b) * w = error₁ (* (λ ()))
binOpStep nil / w = error₁ (/ (λ ()))
binOpStep (addr a) / w = error₁ (/ (λ ()))
binOpStep (number m) / nil = error₂ (/ (λ ()))
binOpStep (number m) / (addr a) = error₂ (/ (λ ()))
binOpStep (number m) / (number n) = step (number (primFloatTimes m n)) (/ m n)
binOpStep (number m) / (bool b) = error₂ (/ (λ ()))
binOpStep (bool b) / w = error₁ (/ (λ ()))
binOpStep nil < w = error₁ (< (λ ()))
binOpStep (addr a) < w = error₁ (< (λ ()))
binOpStep (number m) < nil = error₂ (< (λ ()))
binOpStep (number m) < (addr a) = error₂ (< (λ ()))
binOpStep (number m) < (number n) = step (bool (primFloatLess m n)) (< m n)
binOpStep (number m) < (bool b) = error₂ (< (λ ()))
binOpStep (bool b) < w = error₁ (< (λ ()))
binOpStep nil > w = error₁ (> (λ ()))
binOpStep (addr a) > w = error₁ (> (λ ()))
binOpStep (number m) > nil = error₂ (> (λ ()))
binOpStep (number m) > (addr a) = error₂ (> (λ ()))
binOpStep (number m) > (number n) = step (bool (primFloatLess n m)) (> m n)
binOpStep (number m) > (bool b) = error₂ (> (λ ()))
binOpStep (bool b) > w = error₁ (> (λ ()))
binOpStep v == w = step (bool (evalEqOp v w)) (== v w)
binOpStep v ~= w = step (bool (evalNeqOp v w)) (~= v w)
binOpStep nil <= w = error₁ (<= (λ ()))
binOpStep (addr a) <= w = error₁ (<= (λ ()))
binOpStep (number m) <= nil = error₂ (<= (λ ()))
binOpStep (number m) <= (addr a) = error₂ (<= (λ ()))
binOpStep (number m) <= (number n) = step (bool (primFloatLess m n or primFloatEquality m n)) (<= m n)
binOpStep (number m) <= (bool b) = error₂ (<= (λ ()))
binOpStep (bool b) <= w = error₁ (<= (λ ()))
binOpStep nil >= w = error₁ (>= (λ ()))
binOpStep (addr a) >= w = error₁ (>= (λ ()))
binOpStep (number m) >= nil = error₂ (>= (λ ()))
binOpStep (number m) >= (addr a) = error₂ (>= (λ ()))
binOpStep (number m) >= (number n) = step (bool (primFloatLess n m or primFloatEquality m n)) (>= m n)
binOpStep (number m) >= (bool b) = error₂ (>= (λ ()))
binOpStep (bool b) >= w = error₁ (>= (λ ()))
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : H B (H B ⟶ᴮ B H) StepResultᴮ H B
return : V {B} (B (return (val V) B)) StepResultᴮ H B
return : v {B} (B (return (val v) B)) StepResultᴮ H B
done : (B done) StepResultᴮ H B
error : (RuntimeErrorᴮ H B) StepResultᴮ H B
@ -30,54 +97,44 @@ data StepResultᴱ H M where
stepᴱ : {a} H M StepResultᴱ {a} H M
stepᴮ : {a} H B StepResultᴮ {a} H B
stepᴱ H nil = value nil refl
stepᴱ H (var x) = error (UnboundVariable x)
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (number x) = value (number x) refl
stepᴱ H (true) = value (bool true) refl
stepᴱ H (false) = value (bool false) refl
stepᴱ H (val v) = value v refl
stepᴱ H (var x) = error UnboundVariable
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H M D = step H (M $ N) (app₁ D)
stepᴱ H (_ $ N) | value V refl with stepᴱ H N
stepᴱ H (_ $ N) | value V refl | step H N s = step H (val V $ N) (app₂ s)
stepᴱ H (_ $ _) | value nil refl | value W refl = error (app₁ (TypeMismatch function nil λ()))
stepᴱ H (_ $ _) | value (number n) refl | value W refl = error (app₁ (TypeMismatch function (number n) λ()))
stepᴱ H (_ $ _) | value (bool x) refl | value W refl = error (app₁ (TypeMismatch function (bool x) λ()))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (nothing , p) = error (app₁ (SEGV a p))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (just(function F is B end) , p) = step H (block fun F is B [ W / name (arg F) ]ᴮ end) (beta p)
stepᴱ H (_ $ N) | value v refl with stepᴱ H N
stepᴱ H (_ $ N) | value v refl | step H N s = step H (val v $ N) (app₂ v s)
stepᴱ H (_ $ _) | value (addr a) refl | value w refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (nothing , p) = error (app₁ (SEGV p))
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (just(function F is B end) , p) = step H (block (fun F) is B [ w / name (arg F) ]ᴮ end) (beta function F is B end w refl p)
stepᴱ H (_ $ _) | value nil refl | value w refl = error (FunctionMismatch nil w (λ ()))
stepᴱ H (_ $ _) | value (number m) refl | value w refl = error (FunctionMismatch (number m) w (λ ()))
stepᴱ H (_ $ _) | value (bool b) refl | value w refl = error (FunctionMismatch (bool b) w (λ ()))
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H B D = step H (block b is B end) (block D)
stepᴱ H (block b is (return _ B) end) | return V refl = step H (val V) return
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is B end) | error E = error (block b E)
stepᴱ H (block b is (return _ B) end) | return v refl = step H (val v) (return v)
stepᴱ H (block b is done end) | done refl = step H (val nil) done
stepᴱ H (block b is B end) | error E = error (block E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H p = step H (addr a) (function p)
stepᴱ H (binexp x op y) with stepᴱ H x
stepᴱ H (binexp x op y) | value x refl with stepᴱ H y
-- Have to use explicit form for ≡ here because it's a heavily overloaded symbol
stepᴱ H (binexp x Luau.Syntax.≡ y) | value x refl | value y refl = step H (val (evalEqOp x y)) binOpEquality
stepᴱ H (binexp x y) | value x refl | value y refl = step H (val (evalNeqOp x y)) binOpInequality
stepᴱ H (binexp x op y) | value (number x) refl | value (number y) refl = step H (val (evalNumOp x op y)) binOpNumbers
stepᴱ H (binexp x op y) | value (number x) refl | step H y s = step H (binexp (number x) op y) (binOp₂ s)
stepᴱ H (binexp x op y) | value (number x) refl | error E = error (bin₂ E)
stepᴱ H (binexp x op y) | value nil refl | _ = error (bin₁ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | _ | value nil refl = error (bin₂ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | value (addr a) refl | _ = error (bin₁ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | _ | value (addr a) refl = error (bin₂ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | value (bool x) refl | _ = error (bin₁ (TypeMismatch number (bool x) λ()))
stepᴱ H (binexp x op y) | _ | value (bool y) refl = error (bin₂ (TypeMismatch number (bool y) λ()))
stepᴱ H (binexp x op y) | step H x s = step H (binexp x op y) (binOp₁ s)
stepᴱ H (binexp x op y) | error E = error (bin₁ E)
stepᴱ H function F is C end | ok a H p = step H (val (addr a)) (function a p)
stepᴱ H (binexp M op N) with stepᴱ H M
stepᴱ H (binexp M op N) | step H M s = step H (binexp M op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴱ H (binexp M op N) | value v refl with stepᴱ H N
stepᴱ H (binexp M op N) | value v refl | step H N s = step H (binexp (val v) op N) (binOp₂ s)
stepᴱ H (binexp M op N) | value v refl | error E = error (bin₂ E)
stepᴱ H (binexp M op N) | value v refl | value w refl with binOpStep v op w
stepᴱ H (binexp M op N) | value v refl | value w refl | step x p = step H (val x) (binOp₀ p)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₁ E = error (BinOpMismatch₁ v w E)
stepᴱ H (binexp M op N) | value v refl | value w refl | error₂ E = error (BinOpMismatch₂ v w E)
stepᴮ H (function F is C end B) with alloc H (function F is C end)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / fun F ]ᴮ) (function p)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / name (fun F) ]ᴮ) (function a p)
stepᴮ H (local x M B) with stepᴱ H M
stepᴮ H (local x M B) | step H M D = step H (local x M B) (local D)
stepᴮ H (local x _ B) | value V refl = step H (B [ V / name x ]ᴮ) subst
stepᴮ H (local x M B) | error E = error (local x E)
stepᴮ H (local x _ B) | value v refl = step H (B [ v / name x ]ᴮ) (subst v)
stepᴮ H (local x M B) | error E = error (local E)
stepᴮ H (return M B) with stepᴱ H M
stepᴮ H (return M B) | step H M D = step H (return M B) (return D)
stepᴮ H (return _ B) | value V refl = return V refl

View File

@ -0,0 +1,470 @@
{-# OPTIONS --rewriting #-}
module Properties.StrictMode where
import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; to ∅ᴴ)
open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴᴱ; Warningᴴᴮ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpWarning; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr; +; -; *; /; <; >; <=; >=)
open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_)
open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=)
open import Luau.Type using (Type; strict; nil; _⇒_; none; tgt; _≡ᵀ_; _≡ᴹᵀ_)
open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orNone; tgtBinOp)
open import Luau.Var using (_≡ⱽ_)
open import Luau.Addr using (_≡ᴬ_)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ)
open import Luau.VarCtxt using (VarCtxt; )
open import Properties.Remember using (remember; _,_)
open import Properties.Equality using (_≢_; sym; cong; trans; subst₁)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴᴱ; typeCheckᴴᴮ; mustBeFunction; mustBeNumber)
open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=)
open import Luau.RuntimeType using (valueType)
src = Luau.Type.src strict
data _⊑_ (H : Heap yes) : Heap yes Set where
refl : (H H)
snoc : {H a V} (H ≡ᴴ H a V) (H H)
rednᴱ⊑ : {H H M M} (H M ⟶ᴱ M H) (H H)
rednᴮ⊑ : {H H B B} (H B ⟶ᴮ B H) (H H)
rednᴱ⊑ (function a p) = snoc p
rednᴱ⊑ (app₁ s) = rednᴱ⊑ s
rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s
rednᴱ⊑ (beta O v p q) = refl
rednᴱ⊑ (block s) = rednᴮ⊑ s
rednᴱ⊑ (return v) = refl
rednᴱ⊑ done = refl
rednᴱ⊑ (binOp₀ p) = refl
rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s
rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s
rednᴮ⊑ (local s) = rednᴱ⊑ s
rednᴮ⊑ (subst v) = refl
rednᴮ⊑ (function a p) = snoc p
rednᴮ⊑ (return s) = rednᴱ⊑ s
data LookupResult (H : Heap yes) a V : Set where
just : (H [ a ]ᴴ just V) LookupResult H a V
nothing : (H [ a ]ᴴ nothing) LookupResult H a V
lookup-⊑-nothing : {H H} a (H H) (H [ a ]ᴴ nothing) (H [ a ]ᴴ nothing)
lookup-⊑-nothing {H} a refl p = p
lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H
lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl
lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p
data OrWarningᴱ {Γ M T} (H : Heap yes) (D : Γ ⊢ᴱ M T) A : Set where
ok : A OrWarningᴱ H D A
warning : Warningᴱ H D OrWarningᴱ H D A
data OrWarningᴮ {Γ B T} (H : Heap yes) (D : Γ ⊢ᴮ B T) A : Set where
ok : A OrWarningᴮ H D A
warning : Warningᴮ H D OrWarningᴮ H D A
data OrWarningᴴᴱ {Γ M T} H (D : Γ ⊢ᴴᴱ H M T) A : Set where
ok : A OrWarningᴴᴱ H D A
warning : Warningᴴᴱ H D OrWarningᴴᴱ H D A
data OrWarningᴴᴮ {Γ B T} H (D : Γ ⊢ᴴᴮ H B T) A : Set where
ok : A OrWarningᴴᴮ H D A
warning : Warningᴴᴮ H D OrWarningᴴᴮ H D A
heap-weakeningᴱ : H M {H Γ} (H H) OrWarningᴱ H (typeCheckᴱ H Γ M) (typeOfᴱ H Γ M typeOfᴱ H Γ M)
heap-weakeningᴮ : H B {H Γ} (H H) OrWarningᴮ H (typeCheckᴮ H Γ B) (typeOfᴮ H Γ B typeOfᴮ H Γ B)
heap-weakeningᴱ H (var x) h = ok refl
heap-weakeningᴱ H (val nil) h = ok refl
heap-weakeningᴱ H (val (addr a)) refl = ok refl
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} defn) with a ≡ᴬ b
heap-weakeningᴱ H (val (addr a)) (snoc {a = a} defn) | yes refl = warning (UnallocatedAddress refl)
heap-weakeningᴱ H (val (addr a)) (snoc {a = b} p) | no q = ok (cong orNone (cong typeOfᴹᴼ (lookup-not-allocated p q)))
heap-weakeningᴱ H (val (number n)) h = ok refl
heap-weakeningᴱ H (val (bool b)) h = ok refl
heap-weakeningᴱ H (binexp M op N) h = ok refl
heap-weakeningᴱ H (M $ N) h with heap-weakeningᴱ H M h
heap-weakeningᴱ H (M $ N) h | ok p = ok (cong tgt p)
heap-weakeningᴱ H (M $ N) h | warning W = warning (app₁ W)
heap-weakeningᴱ H (function f var x T ⟩∈ U is B end) h = ok refl
heap-weakeningᴱ H (block var b T is B end) h = ok refl
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | ok p = ok p
heap-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h | warning W = warning (function₂ W)
heap-weakeningᴮ H (local var x T M B) h with heap-weakeningᴮ H B h
heap-weakeningᴮ H (local var x T M B) h | ok p = ok p
heap-weakeningᴮ H (local var x T M B) h | warning W = warning (local₂ W)
heap-weakeningᴮ H (return M B) h with heap-weakeningᴱ H M h
heap-weakeningᴮ H (return M B) h | ok p = ok p
heap-weakeningᴮ H (return M B) h | warning W = warning (return W)
heap-weakeningᴮ H (done) h = ok refl
none-not-obj : O none typeOfᴼ O
none-not-obj (function f var x T ⟩∈ U is B end) ()
typeOf-val-not-none : {H Γ} v OrWarningᴱ H (typeCheckᴱ H Γ (val v)) (none typeOfᴱ H Γ (val v))
typeOf-val-not-none nil = ok (λ ())
typeOf-val-not-none (number n) = ok (λ ())
typeOf-val-not-none (bool b) = ok (λ ())
typeOf-val-not-none {H = H} (addr a) with remember (H [ a ]ᴴ)
typeOf-val-not-none {H = H} (addr a) | (just O , p) = ok (λ q none-not-obj O (trans q (cong orNone (cong typeOfᴹᴼ p))))
typeOf-val-not-none {H = H} (addr a) | (nothing , p) = warning (UnallocatedAddress p)
substitutivityᴱ : {Γ T} H M v x (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) M typeOfᴱ H Γ (M [ v / x ]ᴱ))
substitutivityᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (yes p)))
substitutivityᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) (typeOfᴱ H (Γ x T) (var y) typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever (no p)))
substitutivityᴮ : {Γ T} H B v x (just T typeOfⱽ H v) (typeOfᴮ H (Γ x T) B typeOfᴮ H Γ (B [ v / x ]ᴮ))
substitutivityᴮ-unless-yes : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (yes p)))
substitutivityᴮ-unless-no : {Γ Γ′ T} H B v x y (p : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) (typeOfᴮ H Γ′ B typeOfᴮ H Γ (B [ v / x ]ᴮunless (no p)))
substitutivityᴱ H (var y) v x p with x ≡ⱽ y
substitutivityᴱ H (var y) v x p | yes q = substitutivityᴱ-whenever-yes H v x y q p
substitutivityᴱ H (var y) v x p | no q = substitutivityᴱ-whenever-no H v x y q p
substitutivityᴱ H (val w) v x p = refl
substitutivityᴱ H (binexp M op N) v x p = refl
substitutivityᴱ H (M $ N) v x p = cong tgt (substitutivityᴱ H M v x p)
substitutivityᴱ H (function f var y T ⟩∈ U is B end) v x p = refl
substitutivityᴱ H (block var b T is B end) v x p = refl
substitutivityᴱ-whenever-yes H v x x refl q = cong orNone q
substitutivityᴱ-whenever-no H v x y p q = cong orNone ( sym (⊕-lookup-miss x y _ _ p))
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p with x ≡ⱽ f
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | yes q = substitutivityᴮ-unless-yes H B v x f q p (⊕-over q)
substitutivityᴮ H (function f var y T ⟩∈ U is C end B) v x p | no q = substitutivityᴮ-unless-no H B v x f q p (⊕-swap q)
substitutivityᴮ H (local var y T M B) v x p with x ≡ⱽ y
substitutivityᴮ H (local var y T M B) v x p | yes q = substitutivityᴮ-unless-yes H B v x y q p (⊕-over q)
substitutivityᴮ H (local var y T M B) v x p | no q = substitutivityᴮ-unless-no H B v x y q p (⊕-swap q)
substitutivityᴮ H (return M B) v x p = substitutivityᴱ H M v x p
substitutivityᴮ H done v x p = refl
substitutivityᴮ-unless-yes H B v x x refl q refl = refl
substitutivityᴮ-unless-no H B v x y p q refl = substitutivityᴮ H B v x q
binOpPreservation : H {op v w x} (v op w x) (tgtBinOp op typeOfᴱ H (val x))
binOpPreservation H (+ m n) = refl
binOpPreservation H (- m n) = refl
binOpPreservation H (/ m n) = refl
binOpPreservation H (* m n) = refl
binOpPreservation H (< m n) = refl
binOpPreservation H (> m n) = refl
binOpPreservation H (<= m n) = refl
binOpPreservation H (>= m n) = refl
binOpPreservation H (== v w) = refl
binOpPreservation H (~= v w) = refl
preservationᴱ : H M {H M} (H M ⟶ᴱ M H) OrWarningᴴᴱ H (typeCheckᴴᴱ H M) (typeOfᴱ H M typeOfᴱ H M)
preservationᴮ : H B {H B} (H B ⟶ᴮ B H) OrWarningᴴᴮ H (typeCheckᴴᴮ H B) (typeOfᴮ H B typeOfᴮ H B)
preservationᴱ H (function f var x T ⟩∈ U is B end) (function a defn) = ok refl
preservationᴱ H (M $ N) (app₁ s) with preservationᴱ H M s
preservationᴱ H (M $ N) (app₁ s) | ok p = ok (cong tgt p)
preservationᴱ H (M $ N) (app₁ s) | warning (expr W) = warning (expr (app₁ W))
preservationᴱ H (M $ N) (app₁ s) | warning (heap W) = warning (heap W)
preservationᴱ H (M $ N) (app₂ p s) with heap-weakeningᴱ H M (rednᴱ⊑ s)
preservationᴱ H (M $ N) (app₂ p s) | ok q = ok (cong tgt q)
preservationᴱ H (M $ N) (app₂ p s) | warning W = warning (expr (app₁ W))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) with remember (typeOfⱽ H v)
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) with S ≡ᵀ U | T ≡ᵀ typeOfᴮ H (x S) B
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | yes refl = ok (cong tgt (cong orNone (cong typeOfᴹᴼ p)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | yes refl | no r = warning (heap (addr a p (FunctionDefnMismatch r)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (just U , q) | no r | _ = warning (expr (FunctionCallMismatch (λ s r (trans (trans (sym (cong src (cong orNone (cong typeOfᴹᴼ p)))) s) (cong orNone q)))))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) with typeOf-val-not-none v
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | ok r = CONTRADICTION (r (sym (cong orNone q)))
preservationᴱ H (val (addr a) $ N) (beta (function f var x S ⟩∈ T is B end) v refl p) | (nothing , q) | warning W = warning (expr (app₂ W))
preservationᴱ H (block var b T is B end) (block s) = ok refl
preservationᴱ H (block var b T is return M B end) (return v) with T ≡ᵀ typeOfᴱ H (val v)
preservationᴱ H (block var b T is return M B end) (return v) | yes p = ok p
preservationᴱ H (block var b T is return M B end) (return v) | no p = warning (expr (BlockMismatch p))
preservationᴱ H (block var b T is done end) (done) with T ≡ᵀ nil
preservationᴱ H (block var b T is done end) (done) | yes p = ok p
preservationᴱ H (block var b T is done end) (done) | no p = warning (expr (BlockMismatch p))
preservationᴱ H (binexp M op N) (binOp₀ s) = ok (binOpPreservation H s)
preservationᴱ H (binexp M op N) (binOp₁ s) = ok refl
preservationᴱ H (binexp M op N) (binOp₂ s) = ok refl
preservationᴮ H (local var x T M B) (local s) with heap-weakeningᴮ H B (rednᴱ⊑ s)
preservationᴮ H (local var x T M B) (local s) | ok p = ok p
preservationᴮ H (local var x T M B) (local s) | warning W = warning (block (local₂ W))
preservationᴮ H (local var x T M B) (subst v) with remember (typeOfⱽ H v)
preservationᴮ H (local var x T M B) (subst v) | (just U , p) with T ≡ᵀ U
preservationᴮ H (local var x T M B) (subst v) | (just T , p) | yes refl = ok (substitutivityᴮ H B v x (sym p))
preservationᴮ H (local var x T M B) (subst v) | (just U , p) | no q = warning (block (LocalVarMismatch (λ r q (trans r (cong orNone p)))))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) with typeOf-val-not-none v
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | ok q = CONTRADICTION (q (sym (cong orNone p)))
preservationᴮ H (local var x T M B) (subst v) | (nothing , p) | warning W = warning (block (local₁ W))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) with heap-weakeningᴮ H B (snoc defn)
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | ok r = ok (trans r (substitutivityᴮ _ B (addr a) f refl))
preservationᴮ H (function f var x T ⟩∈ U is C end B) (function a defn) | warning W = warning (block (function₂ W))
preservationᴮ H (return M B) (return s) with preservationᴱ H M s
preservationᴮ H (return M B) (return s) | ok p = ok p
preservationᴮ H (return M B) (return s) | warning (expr W) = warning (block (return W))
preservationᴮ H (return M B) (return s) | warning (heap W) = warning (heap W)
reflect-substitutionᴱ : {Γ T} H M v x (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) Warningᴱ H (typeCheckᴱ H (Γ x T) M)
reflect-substitutionᴱ-whenever-yes : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever yes p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴱ-whenever-no : {Γ T} H v x y (p : x y) (just T typeOfⱽ H v) Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever no p)) Warningᴱ H (typeCheckᴱ H (Γ x T) (var y))
reflect-substitutionᴮ : {Γ T} H B v x (just T typeOfⱽ H v) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) Warningᴮ H (typeCheckᴮ H (Γ x T) B)
reflect-substitutionᴮ-unless-yes : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴮ-unless-no : {Γ Γ′ T} H B v x y (r : x y) (just T typeOfⱽ H v) (Γ′ Γ x T) Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) Warningᴮ H (typeCheckᴮ H Γ′ B)
reflect-substitutionᴱ H (var y) v x p W with x ≡ⱽ y
reflect-substitutionᴱ H (var y) v x p W | yes r = reflect-substitutionᴱ-whenever-yes H v x y r p W
reflect-substitutionᴱ H (var y) v x p W | no r = reflect-substitutionᴱ-whenever-no H v x y r p W
reflect-substitutionᴱ H (val (addr a)) v x p (UnallocatedAddress r) = UnallocatedAddress r
reflect-substitutionᴱ H (M $ N) v x p (FunctionCallMismatch q) = FunctionCallMismatch (λ s q (trans (cong src (sym (substitutivityᴱ H M v x p))) (trans s (substitutivityᴱ H N v x p))))
reflect-substitutionᴱ H (M $ N) v x p (app₁ W) = app₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴱ H (M $ N) v x p (app₂ W) = app₂ (reflect-substitutionᴱ H N v x p W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-yes H B v x y r p (⊕-over r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-no H B v x y r p (⊕-swap r))))
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴱ H (function f var y T ⟩∈ U is B end) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴱ H (block var b T is B end) v x p (BlockMismatch q) = BlockMismatch (λ r q (trans r (substitutivityᴮ H B v x p)))
reflect-substitutionᴱ H (block var b T is B end) v x p (block₁ W) = block₁ (reflect-substitutionᴮ H B v x p W)
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₁ q) = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H M x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (BinOpMismatch₂ q) = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym (substitutivityᴱ H N x v p)) q)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₁ W) = bin₁ (reflect-substitutionᴱ H M x v p W)
reflect-substitutionᴱ H (binexp M op N) x v p (bin₂ W) = bin₂ (reflect-substitutionᴱ H N x v p W)
reflect-substitutionᴱ-whenever-no H v x y p q (UnboundVariable r) = UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) r)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) with trans p (cong typeOfᴹᴼ q)
reflect-substitutionᴱ-whenever-yes H (addr a) x x refl p (UnallocatedAddress q) | ()
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) | yes r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-yes H C v x y r p (⊕-over r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (FunctionDefnMismatch q) | no r = FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ-unless-no H C v x y r p (⊕-swap r))))
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | yes r = function₁ (reflect-substitutionᴮ-unless-yes H C v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₁ W) | no r = function₁ (reflect-substitutionᴮ-unless-no H C v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W) with (x ≡ⱽ f)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| yes r = function₂ (reflect-substitutionᴮ-unless-yes H B v x f r p (⊕-over r) W)
reflect-substitutionᴮ H (function f var y T ⟩∈ U is C end B) v x p (function₂ W)| no r = function₂ (reflect-substitutionᴮ-unless-no H B v x f r p (⊕-swap r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (LocalVarMismatch q) = LocalVarMismatch (λ r q (trans r (substitutivityᴱ H M v x p)))
reflect-substitutionᴮ H (local var y T M B) v x p (local₁ W) = local₁ (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) with (x ≡ⱽ y)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | yes r = local₂ (reflect-substitutionᴮ-unless-yes H B v x y r p (⊕-over r) W)
reflect-substitutionᴮ H (local var y T M B) v x p (local₂ W) | no r = local₂ (reflect-substitutionᴮ-unless-no H B v x y r p (⊕-swap r) W)
reflect-substitutionᴮ H (return M B) v x p (return W) = return (reflect-substitutionᴱ H M v x p W)
reflect-substitutionᴮ-unless-yes H B v x y r p refl W = W
reflect-substitutionᴮ-unless-no H B v x y r p refl W = reflect-substitutionᴮ H B v x p W
reflect-weakeningᴱ : H M {H Γ} (H H) Warningᴱ H (typeCheckᴱ H Γ M) Warningᴱ H (typeCheckᴱ H Γ M)
reflect-weakeningᴮ : H B {H Γ} (H H) Warningᴮ H (typeCheckᴮ H Γ B) Warningᴮ H (typeCheckᴮ H Γ B)
reflect-weakeningᴱ H (var x) h (UnboundVariable p) = (UnboundVariable p)
reflect-weakeningᴱ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p)
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) with heap-weakeningᴱ H M h | heap-weakeningᴱ H N h
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | ok q₁ | ok q₂ = FunctionCallMismatch (λ r p (trans (cong src (sym q₁)) (trans r q₂)))
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | warning W | _ = app₁ W
reflect-weakeningᴱ H (M $ N) h (FunctionCallMismatch p) | _ | warning W = app₂ W
reflect-weakeningᴱ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) with heap-weakeningᴱ H M h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | ok q = BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₁ p) | warning W = bin₁ W
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) with heap-weakeningᴱ H N h
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | ok q = BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p)
reflect-weakeningᴱ H (binexp M op N) h (BinOpMismatch₂ p) | warning W = bin₂ W
reflect-weakeningᴱ H (binexp M op N) h (bin₁ W) = bin₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴱ H (binexp M op N) h (bin₂ W) = bin₂ (reflect-weakeningᴱ H N h W)
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴱ H (function f var y T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) | ok q = BlockMismatch (λ r p (trans r q))
reflect-weakeningᴱ H (block var b T is B end) h (BlockMismatch p) | warning W = block₁ W
reflect-weakeningᴱ H (block var b T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (return M B) h (return W) = return (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) with heap-weakeningᴱ H M h
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) | ok q = LocalVarMismatch (λ r p (trans r q))
reflect-weakeningᴮ H (local var y T M B) h (LocalVarMismatch p) | warning W = local₁ W
reflect-weakeningᴮ H (local var y T M B) h (local₁ W) = local₁ (reflect-weakeningᴱ H M h W)
reflect-weakeningᴮ H (local var y T M B) h (local₂ W) = local₂ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) with heap-weakeningᴮ H C h
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₁ W) = function₁ (reflect-weakeningᴮ H C h W)
reflect-weakeningᴮ H (function f var x T ⟩∈ U is C end B) h (function₂ W) = function₂ (reflect-weakeningᴮ H B h W)
reflect-weakeningᴼ : H O {H} (H H) Warningᴼ H (typeCheckᴼ H O) Warningᴼ H (typeCheckᴼ H O)
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) with heap-weakeningᴮ H B h
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | ok q = FunctionDefnMismatch (λ r p (trans r q))
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (FunctionDefnMismatch p) | warning W = function₁ W
reflect-weakeningᴼ H (just (function f var x T ⟩∈ U is B end)) h (function₁ W) = function₁ (reflect-weakeningᴮ H B h W)
reflectᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴱ H (typeCheckᴱ H M) Warningᴴᴱ H (typeCheckᴴᴱ H M)
reflectᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴮ H (typeCheckᴮ H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) with preservationᴱ H M s | heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | ok q | ok q = expr (FunctionCallMismatch (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (expr W) | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | warning (heap W) | _ = heap W
reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) | _ | warning W = expr (app₂ W)
reflectᴱ H (M $ N) (app₁ s) (app₁ W) with reflectᴱ H M s W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | heap W = heap W
reflectᴱ H (M $ N) (app₁ s) (app₁ W) | expr W = expr (app₁ W)
reflectᴱ H (M $ N) (app₁ s) (app₂ W) = expr (app₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) with heap-weakeningᴱ H (val p) (rednᴱ⊑ s) | preservationᴱ H N s
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | ok q | ok q = expr (FunctionCallMismatch (λ r p (trans (trans (cong src (sym q)) r) q)))
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | warning W | _ = expr (app₁ W)
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | _ | warning (expr W) = expr (app₂ W)
reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch p) | _ | warning (heap W) = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₁ W) = expr (app₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) with reflectᴱ H N s W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | heap W = heap W
reflectᴱ H (M $ N) (app₂ p s) (app₂ W) | expr W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just T , r) | yes refl = heap (addr a p (FunctionDefnMismatch (λ s q (trans s (substitutivityᴮ H B v x (sym r))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (just S , r) | no s = expr (FunctionCallMismatch (λ t s (trans (cong orNone (sym r)) (trans (sym t) (cong src (cong orNone (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) with typeOf-val-not-none v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | ok s = CONTRADICTION (s (cong orNone (sym r)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (BlockMismatch q) | (nothing , r) | warning W = expr (app₂ W)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) with remember (typeOfⱽ H v)
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) with S ≡ᵀ T
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just T , q) | yes refl = heap (addr a p (function₁ (reflect-substitutionᴮ H B v x (sym q) W)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (just S , q) | no r = expr (FunctionCallMismatch (λ s r (trans (cong orNone (sym q)) (trans (sym s) (cong src (cong orNone (cong typeOfᴹᴼ p)))))))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) with typeOf-val-not-none v
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | ok r = CONTRADICTION (r (cong orNone (sym q)))
reflectᴱ H (val (addr a) $ N) (beta (function f var x T ⟩∈ U is B end) v refl p) (block₁ W) | (nothing , q) | warning W = expr (app₂ W)
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) with preservationᴮ H B s
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | ok q = expr (BlockMismatch (λ r p (trans r q)))
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | warning (heap W) = heap W
reflectᴱ H (block var b T is B end) (block s) (BlockMismatch p) | warning (block W) = expr (block₁ W)
reflectᴱ H (block var b T is B end) (block s) (block₁ W) with reflectᴮ H B s W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | heap W = heap W
reflectᴱ H (block var b T is B end) (block s) (block₁ W) | block W = expr (block₁ W)
reflectᴱ H (block var b T is B end) (return v) W = expr (block₁ (return W))
reflectᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ())
reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) with preservationᴱ H M s
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) | warning (expr W) = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) with heap-weakeningᴱ H N (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ ((subst₁ (BinOpWarning op) (sym q) p)))
reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) | warning W = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) with reflectᴱ H M s W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | heap W = heap W
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W) | expr W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W) = expr (bin₂ (reflect-weakeningᴱ H N (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) with heap-weakeningᴱ H M (rednᴱ⊑ s)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | ok q = expr (BinOpMismatch₁ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) | warning W = expr (bin₁ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) with preservationᴱ H N s
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | ok q = expr (BinOpMismatch₂ (subst₁ (BinOpWarning op) (sym q) p))
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (heap W) = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) | warning (expr W) = expr (bin₂ W)
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W) = expr (bin₁ (reflect-weakeningᴱ H M (rednᴱ⊑ s) W))
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) with reflectᴱ H N s W
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) | heap W = heap W
reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W) | expr W = expr (bin₂ W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) with preservationᴱ H M s
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | ok q = block (LocalVarMismatch (λ r p (trans r q)))
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | warning (expr W) = block (local₁ W)
reflectᴮ H (local var x T M B) (local s) (LocalVarMismatch p) | warning (heap W) = heap W
reflectᴮ H (local var x T M B) (local s) (local₁ W) with reflectᴱ H M s W
reflectᴮ H (local var x T M B) (local s) (local₁ W) | heap W = heap W
reflectᴮ H (local var x T M B) (local s) (local₁ W) | expr W = block (local₁ W)
reflectᴮ H (local var x T M B) (local s) (local₂ W) = block (local₂ (reflect-weakeningᴮ H B (rednᴱ⊑ s) W))
reflectᴮ H (local var x T M B) (subst v) W with remember (typeOfⱽ H v)
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) with S ≡ᵀ T
reflectᴮ H (local var x T M B) (subst v) W | (just T , p) | yes refl = block (local₂ (reflect-substitutionᴮ H B v x (sym p) W))
reflectᴮ H (local var x T M B) (subst v) W | (just S , p) | no q = block (LocalVarMismatch (λ r q (trans (cong orNone (sym p)) (sym r))))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) with typeOf-val-not-none v
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | ok r = CONTRADICTION (r (cong orNone (sym p)))
reflectᴮ H (local var x T M B) (subst v) W | (nothing , p) | warning W = block (local₁ W)
reflectᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) W = block (function₂ (reflect-weakeningᴮ H B (snoc defn) (reflect-substitutionᴮ _ B (addr a) f refl W)))
reflectᴮ H (return M B) (return s) (return W) with reflectᴱ H M s W
reflectᴮ H (return M B) (return s) (return W) | heap W = heap W
reflectᴮ H (return M B) (return s) (return W) | expr W = block (return W)
reflectᴴᴱ : H M {H M} (H M ⟶ᴱ M H) Warningᴴᴱ H (typeCheckᴴᴱ H M) Warningᴴᴱ H (typeCheckᴴᴱ H M)
reflectᴴᴮ : H B {H B} (H B ⟶ᴮ B H) Warningᴴᴮ H (typeCheckᴴᴮ H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflectᴴᴱ H M s (expr W) = reflectᴱ H M s W
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H B (snoc defn)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = expr (FunctionDefnMismatch λ q p (trans q r))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = expr (function₁ W)
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = expr (function₁ (reflect-weakeningᴮ H B (snoc defn) W))
reflectᴴᴱ H (function f var x T ⟩∈ U is B end) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) | heap W = heap W
reflectᴴᴱ H (M $ N) (app₁ s) (heap W) | expr W = expr (app₁ W)
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) with reflectᴴᴱ H N s (heap W)
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) | heap W = heap W
reflectᴴᴱ H (M $ N) (app₂ p s) (heap W) | expr W = expr (app₂ W)
reflectᴴᴱ H (M $ N) (beta O v p q) (heap W) = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) with reflectᴴᴮ H B s (heap W)
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | heap W = heap W
reflectᴴᴱ H (block var b T is B end) (block s) (heap W) | block W = expr (block₁ W)
reflectᴴᴱ H (block var b T is return N B end) (return v) (heap W) = heap W
reflectᴴᴱ H (block var b T is done end) done (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp₀ s) (heap W) = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | heap W = heap W
reflectᴴᴱ H (binexp M op N) (binOp₁ s) (heap W) | expr W = expr (bin₁ W)
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) with reflectᴴᴱ H N s (heap W)
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) | heap W = heap W
reflectᴴᴱ H (binexp M op N) (binOp₂ s) (heap W) | expr W = expr (bin₂ W)
reflectᴴᴮ H B s (block W) = reflectᴮ H B s W
reflectᴴᴮ H (local var x T M B) (local s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴮ H (local var x T M B) (local s) (heap W) | heap W = heap W
reflectᴴᴮ H (local var x T M B) (local s) (heap W) | expr W = block (local₁ W)
reflectᴴᴮ H (local var x T M B) (subst v) (heap W) = heap W
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) with b ≡ᴬ a
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl with heap-weakeningᴮ H C (snoc defn)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | ok r = block (FunctionDefnMismatch (λ q p (trans q r)))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (FunctionDefnMismatch p))) | yes refl | warning W = block (function₁ W)
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a defn) (heap (addr a refl (function₁ W))) | yes refl = block (function₁ (reflect-weakeningᴮ H C (snoc defn) W))
reflectᴴᴮ H (function f var y T ⟩∈ U is C end B) (function a p) (heap (addr b refl W)) | no r = heap (addr b (lookup-not-allocated p r) (reflect-weakeningᴼ H _ (snoc p) W))
reflectᴴᴮ H (return M B) (return s) (heap W) with reflectᴴᴱ H M s (heap W)
reflectᴴᴮ H (return M B) (return s) (heap W) | heap W = heap W
reflectᴴᴮ H (return M B) (return s) (heap W) | expr W = block (return W)
reflect* : H B {H B} (H B ⟶* B H) Warningᴴᴮ H (typeCheckᴴᴮ H B) Warningᴴᴮ H (typeCheckᴴᴮ H B)
reflect* H B refl W = W
reflect* H B (step s t) W = reflectᴴᴮ H B s (reflect* _ _ t W)
runtimeBinOpWarning : H {op} v BinOpError op (valueType v) BinOpWarning op (orNone (typeOfⱽ H v))
runtimeBinOpWarning H v (+ p) = + (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (- p) = - (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (* p) = * (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (/ p) = / (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (< p) = < (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (> p) = > (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (<= p) = <= (λ q p (mustBeNumber H v q))
runtimeBinOpWarning H v (>= p) = >= (λ q p (mustBeNumber H v q))
runtimeWarningᴱ : H M RuntimeErrorᴱ H M Warningᴱ H (typeCheckᴱ H M)
runtimeWarningᴮ : H B RuntimeErrorᴮ H B Warningᴮ H (typeCheckᴮ H B)
runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl
runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) with typeOf-val-not-none w
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | ok q = FunctionCallMismatch (λ r p (mustBeFunction H v (λ r q (trans r r))))
runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) | warning W = app₂ W
runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err)
runtimeWarningᴱ H (block var b T is B end) (block err) = block₁ (runtimeWarningᴮ H B err)
runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p)
runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p)
runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err)
runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err)
runtimeWarningᴮ H (local var x T M B) (local err) = local₁ (runtimeWarningᴱ H M err)
runtimeWarningᴮ H (return M B) (return err) = return (runtimeWarningᴱ H M err)
wellTypedProgramsDontGoWrong : H B B (∅ᴴ B ⟶* B H) (RuntimeErrorᴮ H B) Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ B)
wellTypedProgramsDontGoWrong H B B t err with reflect* ∅ᴴ B t (block (runtimeWarningᴮ H B err))
wellTypedProgramsDontGoWrong H B B t err | heap (addr a refl ())
wellTypedProgramsDontGoWrong H B B t err | block W = W

View File

@ -0,0 +1,103 @@
{-# OPTIONS --rewriting #-}
open import Luau.Type using (Mode)
module Properties.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Bool using (Bool; true; false)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import FFI.Data.Either using (Either)
open import Luau.TypeCheck(m) using (_⊢ᴱ_∈_; _⊢ᴮ_∈_; ⊢ᴼ_; ⊢ᴴ_; _⊢ᴴᴱ_▷_∈_; _⊢ᴴᴮ_▷_∈_; nil; var; addr; number; bool; app; function; block; binexp; done; return; local; nothing; orNone; tgtBinOp)
open import Luau.Syntax using (Block; Expr; Value; BinaryOperator; yes; nil; addr; number; bool; val; var; binexp; _$_; function_is_end; block_is_end; _∙_; return; done; local_←_; _⟨_⟩; _⟨_⟩∈_; var_∈_; name; fun; arg; +; -; *; /; <; >; ==; ~=; <=; >=)
open import Luau.Type using (Type; nil; any; none; number; boolean; _⇒_; tgt)
open import Luau.RuntimeType using (RuntimeType; nil; number; function; valueType)
open import Luau.VarCtxt using (VarCtxt; ∅; _↦_; _⊕_↦_; _⋒_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import Luau.Addr using (Addr)
open import Luau.Var using (Var; _≡ⱽ_)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Properties.Contradiction using (CONTRADICTION)
open import Properties.Dec using (yes; no)
open import Properties.Equality using (_≢_; sym; trans; cong)
open import Properties.Product using (_×_; _,_)
open import Properties.Remember using (Remember; remember; _,_)
src : Type Type
src = Luau.Type.src m
typeOfᴼ : Object yes Type
typeOfᴼ (function f var x S ⟩∈ T is B end) = (S T)
typeOfᴹᴼ : Maybe(Object yes) Maybe Type
typeOfᴹᴼ nothing = nothing
typeOfᴹᴼ (just O) = just (typeOfᴼ O)
typeOfⱽ : Heap yes Value Maybe Type
typeOfⱽ H nil = just nil
typeOfⱽ H (bool b) = just boolean
typeOfⱽ H (addr a) = typeOfᴹᴼ (H [ a ]ᴴ)
typeOfⱽ H (number n) = just number
typeOfᴱ : Heap yes VarCtxt (Expr yes) Type
typeOfᴮ : Heap yes VarCtxt (Block yes) Type
typeOfᴱ H Γ (var x) = orNone(Γ [ x ]ⱽ)
typeOfᴱ H Γ (val v) = orNone(typeOfⱽ H v)
typeOfᴱ H Γ (M $ N) = tgt(typeOfᴱ H Γ M)
typeOfᴱ H Γ (function f var x S ⟩∈ T is B end) = S T
typeOfᴱ H Γ (block var b T is B end) = T
typeOfᴱ H Γ (binexp M op N) = tgtBinOp op
typeOfᴮ H Γ (function f var x S ⟩∈ T is C end B) = typeOfᴮ H (Γ f (S T)) B
typeOfᴮ H Γ (local var x T M B) = typeOfᴮ H (Γ x T) B
typeOfᴮ H Γ (return M B) = typeOfᴱ H Γ M
typeOfᴮ H Γ done = nil
mustBeFunction : H Γ v (none src (typeOfᴱ H Γ (val v))) (function valueType(v))
mustBeFunction H Γ nil p = CONTRADICTION (p refl)
mustBeFunction H Γ (addr a) p = refl
mustBeFunction H Γ (number n) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool true) p = CONTRADICTION (p refl)
mustBeFunction H Γ (bool false) p = CONTRADICTION (p refl)
mustBeNumber : H Γ v (typeOfᴱ H Γ (val v) number) (valueType(v) number)
mustBeNumber H Γ nil ()
mustBeNumber H Γ (addr a) p with remember (H [ a ]ᴴ)
mustBeNumber H Γ (addr a) p | (just O , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | (just function f var x T ⟩∈ U is B end , q) | ()
mustBeNumber H Γ (addr a) p | (nothing , q) with trans (cong orNone (cong typeOfᴹᴼ (sym q))) p
mustBeNumber H Γ (addr a) p | nothing , q | ()
mustBeNumber H Γ (number n) p = refl
mustBeNumber H Γ (bool true) ()
mustBeNumber H Γ (bool false) ()
typeCheckᴱ : H Γ M (Γ ⊢ᴱ M (typeOfᴱ H Γ M))
typeCheckᴮ : H Γ B (Γ ⊢ᴮ B (typeOfᴮ H Γ B))
typeCheckᴱ H Γ (var x) = var refl
typeCheckᴱ H Γ (val nil) = nil
typeCheckᴱ H Γ (val (addr a)) = addr (orNone (typeOfᴹᴼ (H [ a ]ᴴ)))
typeCheckᴱ H Γ (val (number n)) = number
typeCheckᴱ H Γ (val (bool b)) = bool
typeCheckᴱ H Γ (M $ N) = app (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴱ H Γ (function f var x T ⟩∈ U is B end) = function (typeCheckᴮ H (Γ x T) B)
typeCheckᴱ H Γ (block var b T is B end) = block (typeCheckᴮ H Γ B)
typeCheckᴱ H Γ (binexp M op N) = binexp (typeCheckᴱ H Γ M) (typeCheckᴱ H Γ N)
typeCheckᴮ H Γ (function f var x T ⟩∈ U is C end B) = function (typeCheckᴮ H (Γ x T) C) (typeCheckᴮ H (Γ f (T U)) B)
typeCheckᴮ H Γ (local var x T M B) = local (typeCheckᴱ H Γ M) (typeCheckᴮ H (Γ x T) B)
typeCheckᴮ H Γ (return M B) = return (typeCheckᴱ H Γ M) (typeCheckᴮ H Γ B)
typeCheckᴮ H Γ done = done
typeCheckᴼ : H O (⊢ᴼ O)
typeCheckᴼ H nothing = nothing
typeCheckᴼ H (just function f var x T ⟩∈ U is B end) = function (typeCheckᴮ H (x T) B)
typeCheckᴴ : H (⊢ᴴ H)
typeCheckᴴ H a {O} p = typeCheckᴼ H (O)
typeCheckᴴᴱ : H Γ M (Γ ⊢ᴴᴱ H M typeOfᴱ H Γ M)
typeCheckᴴᴱ H Γ M = (typeCheckᴴ H , typeCheckᴱ H Γ M)
typeCheckᴴᴮ : H Γ M (Γ ⊢ᴴᴮ H M typeOfᴮ H Γ M)
typeCheckᴴᴮ H Γ M = (typeCheckᴴ H , typeCheckᴮ H Γ M)

View File

@ -1 +1,4 @@
false
ANNOTATED PROGRAM:
return true == false
RAN WITH RESULT: false

View File

@ -1 +1,4 @@
true
ANNOTATED PROGRAM:
return 1.0 == 1.0
RAN WITH RESULT: true

View File

@ -1 +1,4 @@
1.0
ANNOTATED PROGRAM:
return 1.0 + 2.0 - 2.0 * 2.0 / 2.0
RAN WITH RESULT: 1.0

View File

@ -1 +1,7 @@
nil
UNANNOTATED PROGRAM:
local function foo(x)
return nil
end
return foo(nil)
RAN WITH RESULT: nil