mirror of
https://github.com/luau-lang/luau.git
synced 2024-11-15 14:25:44 +08:00
Prototype: Added a discussion of set-theoretic models of subtyping (#431)
* Added a discussion of set-theoretic models of subtyping to the prototype
This commit is contained in:
parent
20308bed20
commit
916c83fdc4
@ -9,6 +9,7 @@ open import Luau.Type using (Type; Scalar; strict; nil; number; string; boolean;
|
||||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||||
open import Properties.Equality using (_≢_)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Product using (_×_; _,_)
|
||||
|
||||
src = Luau.Type.src strict
|
||||
|
||||
@ -219,3 +220,92 @@ any-≮:-none = witness (scalar nil) any none
|
||||
|
||||
function-≮:-none : ∀ {T U} → ((T ⇒ U) ≮: none)
|
||||
function-≮:-none = witness function function none
|
||||
|
||||
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
|
||||
-- defines a "set-theoretic" model (sec 2.5)
|
||||
-- Unfortunately we don't quite have this property, due to uninhabited types,
|
||||
-- for example (none -> T) is equivalent to (none -> U)
|
||||
-- when types are interpreted as sets of syntactic values.
|
||||
|
||||
_⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set
|
||||
(P ⊆ Q) = ∀ a → (P a) → (Q a)
|
||||
|
||||
_⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set)
|
||||
(P ⊗ Q) (a , b) = (P a) × (Q b)
|
||||
|
||||
Comp : ∀ {A : Set} → (A → Set) → (A → Set)
|
||||
Comp P a = ¬(P a)
|
||||
|
||||
set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} →
|
||||
|
||||
-- This is the "if" part of being a set-theoretic model
|
||||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) →
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂)))
|
||||
|
||||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where
|
||||
|
||||
S₁t : Language S₁ t
|
||||
S₁t with dec-language S₁ t
|
||||
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
|
||||
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
|
||||
S₁t | Right r = r
|
||||
|
||||
¬T₁u : ¬(Language T₁ u)
|
||||
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
|
||||
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
|
||||
|
||||
not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} →
|
||||
|
||||
-- We don't quite have that this is a set-theoretic model
|
||||
-- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited
|
||||
-- in particular it's not true when T₁ is none, or T₂ is any.
|
||||
∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ →
|
||||
|
||||
-- This is the "only if" part of being a set-theoretic model
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) →
|
||||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂))
|
||||
|
||||
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where
|
||||
|
||||
Q : (Tree × Tree) → Set
|
||||
Q (t , u) = Either (¬Language S₁ t) (Language T₁ u)
|
||||
|
||||
q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁))
|
||||
q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
|
||||
q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
|
||||
|
||||
r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)
|
||||
r function function = function
|
||||
r (function-err t) (function-err ¬S₁t) with dec-language S₂ t
|
||||
r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t
|
||||
r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂))
|
||||
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
|
||||
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
|
||||
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
|
||||
|
||||
-- A counterexample when the argument type is empty.
|
||||
|
||||
set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language none) ⊗ Comp(Language number)) → Q ⊆ Comp((Language none) ⊗ Comp(Language string)))
|
||||
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
|
||||
set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p)
|
||||
|
||||
set-theoretic-counterexample-two : (none ⇒ number) ≮: (none ⇒ string)
|
||||
set-theoretic-counterexample-two = witness
|
||||
(function-ok (scalar number)) (function-ok (scalar number))
|
||||
(function-ok (scalar-scalar number string (λ ())))
|
||||
|
||||
-- At some point we may deal with overloaded function resolution, which should fix this problem...
|
||||
-- The reason why this is connected to overloaded functions is that currently we have that the type of
|
||||
-- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U),
|
||||
-- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V)
|
||||
-- and tgt(none => T) should be any. For example
|
||||
--
|
||||
-- tgt((number => string) & (string => bool))(number)
|
||||
-- is tgt(number => string)(number) & tgt(string => bool)(number)
|
||||
-- is tgt(number => string)(number) & tgt(string => bool)(number&any)
|
||||
-- is tgt(number => string)(number) & tgt(string&number => bool)(any)
|
||||
-- is tgt(number => string)(number) & tgt(none => bool)(any)
|
||||
-- is string & any
|
||||
-- is string
|
||||
--
|
||||
-- there's some discussion of this in the Gentle Introduction paper.
|
||||
|
Loading…
Reference in New Issue
Block a user