Sync to upstream/release/545 (#674)

- Improve type error messages for argument count mismatch in certain
cases
- Fix type checking variadic returns when the type is incompatible which
type checked in certain cases
- Reduce size of upvalue objects by 8 bytes on 64-bit platforms
- Reduce I$ footprint of interpreter by 1.5KB
- Reduce GC pause during atomic stage for programs with a lot of threads
- Remove support for bytecode v2
This commit is contained in:
Arseny Kapoulkine 2022-09-15 15:38:17 -07:00 committed by GitHub
parent 6fbea7cc84
commit 3d74a8f4d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
57 changed files with 1499 additions and 798 deletions

View File

@ -191,6 +191,9 @@ private:
**/
void unblock_(BlockedConstraintId progressed);
TypeId errorRecoveryType() const;
TypePackId errorRecoveryTypePack() const;
ToStringOptions opts;
};

View File

@ -95,9 +95,11 @@ struct CountMismatch
Return,
};
size_t expected;
std::optional<size_t> maximum;
size_t actual;
Context context = Arg;
bool isVariadic = false;
std::string function;
bool operator==(const CountMismatch& rhs) const;
};

View File

@ -92,6 +92,8 @@ inline std::string toString(const Constraint& c)
return toString(c, ToStringOptions{});
}
std::string toString(const LValue& lvalue);
std::string toString(const TypeVar& tv, ToStringOptions& opts);
std::string toString(const TypePackVar& tp, ToStringOptions& opts);

View File

@ -127,8 +127,8 @@ struct TypeChecker
std::optional<Location> originalNameLoc, std::optional<TypeId> selfType, std::optional<TypeId> expectedType);
void checkFunctionBody(const ScopePtr& scope, TypeId type, const AstExprFunction& function);
void checkArgumentList(
const ScopePtr& scope, Unifier& state, TypePackId paramPack, TypePackId argPack, const std::vector<Location>& argLocations);
void checkArgumentList(const ScopePtr& scope, const AstExpr& funName, Unifier& state, TypePackId paramPack, TypePackId argPack,
const std::vector<Location>& argLocations);
WithPredicate<TypePackId> checkExprPack(const ScopePtr& scope, const AstExpr& expr);

View File

@ -185,6 +185,9 @@ std::pair<std::vector<TypeId>, std::optional<TypePackId>> flatten(TypePackId tp,
bool isVariadic(TypePackId tp);
bool isVariadic(TypePackId tp, const TxnLog& log);
// Returns true if the TypePack is Generic or Variadic. Does not walk TypePacks!!
bool isVariadicTail(TypePackId tp, const TxnLog& log, bool includeHiddenVariadics = false);
bool containsNever(TypePackId tp);
} // namespace Luau

View File

@ -23,6 +23,6 @@ std::optional<TypeId> getIndexTypeFromType(const ScopePtr& scope, ErrorVec& erro
TypeId type, const std::string& prop, const Location& location, bool addErrors, InternalErrorReporter& handle);
// Returns the minimum and maximum number of types the argument list can accept.
std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log, TypePackId tp);
std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log, TypePackId tp, bool includeHiddenVariadics = false);
} // namespace Luau

View File

@ -729,6 +729,11 @@ TypePackId ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExpr* exp
if (AstExprCall* call = expr->as<AstExprCall>())
{
TypeId fnType = check(scope, call->func);
const size_t constraintIndex = scope->constraints.size();
const size_t scopeIndex = scopes.size();
std::vector<TypeId> args;
for (AstExpr* arg : call->args)
@ -738,7 +743,8 @@ TypePackId ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExpr* exp
// TODO self
TypeId fnType = check(scope, call->func);
const size_t constraintEndIndex = scope->constraints.size();
const size_t scopeEndIndex = scopes.size();
astOriginalCallTypes[call->func] = fnType;
@ -753,7 +759,23 @@ TypePackId ConstraintGraphBuilder::checkPack(const ScopePtr& scope, AstExpr* exp
scope->unqueuedConstraints.push_back(
std::make_unique<Constraint>(NotNull{scope.get()}, call->func->location, SubtypeConstraint{inferredFnType, instantiatedType}));
NotNull<const Constraint> sc(scope->unqueuedConstraints.back().get());
NotNull<Constraint> sc(scope->unqueuedConstraints.back().get());
// We force constraints produced by checking function arguments to wait
// until after we have resolved the constraint on the function itself.
// This ensures, for instance, that we start inferring the contents of
// lambdas under the assumption that their arguments and return types
// will be compatible with the enclosing function call.
for (size_t ci = constraintIndex; ci < constraintEndIndex; ++ci)
scope->constraints[ci]->dependencies.push_back(sc);
for (size_t si = scopeIndex; si < scopeEndIndex; ++si)
{
for (auto& c : scopes[si].second->constraints)
{
c->dependencies.push_back(sc);
}
}
addConstraint(scope, call->func->location,
FunctionCallConstraint{
@ -1080,7 +1102,7 @@ ConstraintGraphBuilder::FunctionSignature ConstraintGraphBuilder::checkFunctionS
signatureScope = bodyScope;
}
std::optional<TypePackId> varargPack;
TypePackId varargPack = nullptr;
if (fn->vararg)
{
@ -1096,6 +1118,14 @@ ConstraintGraphBuilder::FunctionSignature ConstraintGraphBuilder::checkFunctionS
signatureScope->varargPack = varargPack;
}
else
{
varargPack = arena->addTypePack(VariadicTypePack{singletonTypes->anyType, /*hidden*/ true});
// We do not add to signatureScope->varargPack because ... is not valid
// in functions without an explicit ellipsis.
}
LUAU_ASSERT(nullptr != varargPack);
if (fn->returnAnnotation)
{

View File

@ -240,6 +240,12 @@ void dump(ConstraintSolver* cs, ToStringOptions& opts)
int blockCount = it == cs->blockedConstraints.end() ? 0 : int(it->second);
printf("\t%d\t\t%s\n", blockCount, toString(*dep, opts).c_str());
}
if (auto fcc = get<FunctionCallConstraint>(*c))
{
for (NotNull<const Constraint> inner : fcc->innerConstraints)
printf("\t\t\t%s\n", toString(*inner, opts).c_str());
}
}
}
@ -522,7 +528,7 @@ bool ConstraintSolver::tryDispatch(const BinaryConstraint& c, NotNull<const Cons
if (isBlocked(leftType))
{
asMutable(resultType)->ty.emplace<BoundTypeVar>(singletonTypes->errorRecoveryType());
asMutable(resultType)->ty.emplace<BoundTypeVar>(errorRecoveryType());
// reportError(constraint->location, CannotInferBinaryOperation{c.op, std::nullopt, CannotInferBinaryOperation::Operation});
return true;
}
@ -574,10 +580,24 @@ bool ConstraintSolver::tryDispatch(const IterableConstraint& c, NotNull<const Co
if (iteratorTail)
return block_(*iteratorTail);
{
bool blocked = false;
for (TypeId t : iteratorTypes)
{
if (isBlocked(t))
{
block(t, constraint);
blocked = true;
}
}
if (blocked)
return false;
}
if (0 == iteratorTypes.size())
{
Anyification anyify{
arena, constraint->scope, singletonTypes, &iceReporter, singletonTypes->errorRecoveryType(), singletonTypes->errorRecoveryTypePack()};
Anyification anyify{arena, constraint->scope, singletonTypes, &iceReporter, errorRecoveryType(), errorRecoveryTypePack()};
std::optional<TypePackId> anyified = anyify.substitute(c.variables);
LUAU_ASSERT(anyified);
unify(*anyified, c.variables, constraint->scope);
@ -704,7 +724,7 @@ bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNul
if (!tf.has_value())
{
reportError(UnknownSymbol{petv->name.value, UnknownSymbol::Context::Type}, constraint->location);
bindResult(singletonTypes->errorRecoveryType());
bindResult(errorRecoveryType());
return true;
}
@ -763,7 +783,7 @@ bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNul
if (itf.foundInfiniteType)
{
// TODO (CLI-56761): Report an error.
bindResult(singletonTypes->errorRecoveryType());
bindResult(errorRecoveryType());
return true;
}
@ -786,7 +806,7 @@ bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNul
if (!maybeInstantiated.has_value())
{
// TODO (CLI-56761): Report an error.
bindResult(singletonTypes->errorRecoveryType());
bindResult(errorRecoveryType());
return true;
}
@ -863,13 +883,21 @@ bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<cons
usedMagic = ftv->dcrMagicFunction(NotNull(this), result, c.astFragment);
}
if (!usedMagic)
if (usedMagic)
{
for (const auto& inner : c.innerConstraints)
{
unsolvedConstraints.push_back(inner);
// There are constraints that are blocked on these constraints. If we
// are never going to even examine them, then we should not block
// anything else on them.
//
// TODO CLI-58842
#if 0
for (auto& c: c.innerConstraints)
unblock(c);
#endif
}
else
{
unsolvedConstraints.insert(end(unsolvedConstraints), begin(c.innerConstraints), end(c.innerConstraints));
asMutable(c.result)->ty.emplace<FreeTypePack>(constraint->scope);
}
@ -909,8 +937,7 @@ bool ConstraintSolver::tryDispatchIterableTable(TypeId iteratorTy, const Iterabl
};
auto errorify = [&](auto ty) {
Anyification anyify{
arena, constraint->scope, singletonTypes, &iceReporter, singletonTypes->errorRecoveryType(), singletonTypes->errorRecoveryTypePack()};
Anyification anyify{arena, constraint->scope, singletonTypes, &iceReporter, errorRecoveryType(), errorRecoveryTypePack()};
std::optional errorified = anyify.substitute(ty);
if (!errorified)
reportError(CodeTooComplex{}, constraint->location);
@ -1119,7 +1146,7 @@ void ConstraintSolver::unify(TypeId subType, TypeId superType, NotNull<Scope> sc
if (!u.errors.empty())
{
TypeId errorType = singletonTypes->errorRecoveryType();
TypeId errorType = errorRecoveryType();
u.tryUnify(subType, errorType);
u.tryUnify(superType, errorType);
}
@ -1160,7 +1187,7 @@ TypeId ConstraintSolver::resolveModule(const ModuleInfo& info, const Location& l
if (info.name.empty())
{
reportError(UnknownRequire{}, location);
return singletonTypes->errorRecoveryType();
return errorRecoveryType();
}
std::string humanReadableName = moduleResolver->getHumanReadableModuleName(info.name);
@ -1177,24 +1204,24 @@ TypeId ConstraintSolver::resolveModule(const ModuleInfo& info, const Location& l
if (!moduleResolver->moduleExists(info.name) && !info.optional)
reportError(UnknownRequire{humanReadableName}, location);
return singletonTypes->errorRecoveryType();
return errorRecoveryType();
}
if (module->type != SourceCode::Type::Module)
{
reportError(IllegalRequire{humanReadableName, "Module is not a ModuleScript. It cannot be required."}, location);
return singletonTypes->errorRecoveryType();
return errorRecoveryType();
}
TypePackId modulePack = module->getModuleScope()->returnType;
if (get<Unifiable::Error>(modulePack))
return singletonTypes->errorRecoveryType();
return errorRecoveryType();
std::optional<TypeId> moduleType = first(modulePack);
if (!moduleType)
{
reportError(IllegalRequire{humanReadableName, "Module does not return exactly 1 value. It cannot be required."}, location);
return singletonTypes->errorRecoveryType();
return errorRecoveryType();
}
return *moduleType;
@ -1212,4 +1239,14 @@ void ConstraintSolver::reportError(TypeError e)
errors.back().moduleName = currentModuleName;
}
TypeId ConstraintSolver::errorRecoveryType() const
{
return singletonTypes->errorRecoveryType();
}
TypePackId ConstraintSolver::errorRecoveryTypePack() const
{
return singletonTypes->errorRecoveryTypePack();
}
} // namespace Luau

View File

@ -10,7 +10,8 @@
LUAU_FASTFLAGVARIABLE(LuauTypeMismatchModuleNameResolution, false)
LUAU_FASTFLAGVARIABLE(LuauUseInternalCompilerErrorException, false)
static std::string wrongNumberOfArgsString(size_t expectedCount, size_t actualCount, const char* argPrefix = nullptr, bool isVariadic = false)
static std::string wrongNumberOfArgsString(
size_t expectedCount, std::optional<size_t> maximumCount, size_t actualCount, const char* argPrefix = nullptr, bool isVariadic = false)
{
std::string s = "expects ";
@ -19,11 +20,14 @@ static std::string wrongNumberOfArgsString(size_t expectedCount, size_t actualCo
s += std::to_string(expectedCount) + " ";
if (maximumCount && expectedCount != *maximumCount)
s += "to " + std::to_string(*maximumCount) + " ";
if (argPrefix)
s += std::string(argPrefix) + " ";
s += "argument";
if (expectedCount != 1)
if ((maximumCount ? *maximumCount : expectedCount) != 1)
s += "s";
s += ", but ";
@ -185,7 +189,12 @@ struct ErrorConverter
return "Function only returns " + std::to_string(e.expected) + " value" + expectedS + ". " + std::to_string(e.actual) +
" are required here";
case CountMismatch::Arg:
return "Argument count mismatch. Function " + wrongNumberOfArgsString(e.expected, e.actual, /*argPrefix*/ nullptr, e.isVariadic);
if (!e.function.empty())
return "Argument count mismatch. Function '" + e.function + "' " +
wrongNumberOfArgsString(e.expected, e.maximum, e.actual, /*argPrefix*/ nullptr, e.isVariadic);
else
return "Argument count mismatch. Function " +
wrongNumberOfArgsString(e.expected, e.maximum, e.actual, /*argPrefix*/ nullptr, e.isVariadic);
}
LUAU_ASSERT(!"Unknown context");
@ -247,10 +256,10 @@ struct ErrorConverter
if (e.typeFun.typeParams.size() != e.actualParameters)
return "Generic type '" + name + "' " +
wrongNumberOfArgsString(e.typeFun.typeParams.size(), e.actualParameters, "type", !e.typeFun.typePackParams.empty());
wrongNumberOfArgsString(e.typeFun.typeParams.size(), std::nullopt, e.actualParameters, "type", !e.typeFun.typePackParams.empty());
return "Generic type '" + name + "' " +
wrongNumberOfArgsString(e.typeFun.typePackParams.size(), e.actualPackParameters, "type pack", /*isVariadic*/ false);
wrongNumberOfArgsString(e.typeFun.typePackParams.size(), std::nullopt, e.actualPackParameters, "type pack", /*isVariadic*/ false);
}
std::string operator()(const Luau::SyntaxError& e) const
@ -547,7 +556,7 @@ bool DuplicateTypeDefinition::operator==(const DuplicateTypeDefinition& rhs) con
bool CountMismatch::operator==(const CountMismatch& rhs) const
{
return expected == rhs.expected && actual == rhs.actual && context == rhs.context;
return expected == rhs.expected && maximum == rhs.maximum && actual == rhs.actual && context == rhs.context && function == rhs.function;
}
bool FunctionDoesNotTakeSelf::operator==(const FunctionDoesNotTakeSelf&) const

View File

@ -1529,4 +1529,20 @@ std::string dump(const Constraint& c)
return s;
}
std::string toString(const LValue& lvalue)
{
std::string s;
for (const LValue* current = &lvalue; current; current = baseof(*current))
{
if (auto field = get<Field>(*current))
s = "." + field->key + s;
else if (auto symbol = get<Symbol>(*current))
s = toString(*symbol) + s;
else
LUAU_ASSERT(!"Unknown LValue");
}
return s;
}
} // namespace Luau

View File

@ -408,7 +408,7 @@ struct TypeChecker2
return;
NotNull<Scope> scope = stack.back();
TypeArena tempArena;
TypeArena& arena = module->internalTypes;
std::vector<TypeId> variableTypes;
for (AstLocal* var : forInStatement->vars)
@ -424,10 +424,10 @@ struct TypeChecker2
for (size_t i = 0; i < forInStatement->values.size - 1; ++i)
valueTypes.emplace_back(lookupType(forInStatement->values.data[i]));
TypePackId iteratorTail = lookupPack(forInStatement->values.data[forInStatement->values.size - 1]);
TypePackId iteratorPack = tempArena.addTypePack(valueTypes, iteratorTail);
TypePackId iteratorPack = arena.addTypePack(valueTypes, iteratorTail);
// ... and then expand it out to 3 values (if possible)
const std::vector<TypeId> iteratorTypes = flatten(tempArena, iteratorPack, 3);
const std::vector<TypeId> iteratorTypes = flatten(arena, iteratorPack, 3);
if (iteratorTypes.empty())
{
reportError(GenericError{"for..in loops require at least one value to iterate over. Got zero"}, getLocation(forInStatement->values));
@ -456,7 +456,7 @@ struct TypeChecker2
reportError(GenericError{"for..in loops must be passed (next, [table[, state]])"}, getLocation(forInStatement->values));
// It is okay if there aren't enough iterators, but the iteratee must provide enough.
std::vector<TypeId> expectedVariableTypes = flatten(tempArena, nextFn->retTypes, variableTypes.size());
std::vector<TypeId> expectedVariableTypes = flatten(arena, nextFn->retTypes, variableTypes.size());
if (expectedVariableTypes.size() < variableTypes.size())
reportError(GenericError{"next() does not return enough values"}, forInStatement->vars.data[0]->location);
@ -475,23 +475,23 @@ struct TypeChecker2
// If iteratorTypes is too short to be a valid call to nextFn, we have to report a count mismatch error.
// If 2 is too short to be a valid call to nextFn, we have to report a count mismatch error.
// If 2 is too long to be a valid call to nextFn, we have to report a count mismatch error.
auto [minCount, maxCount] = getParameterExtents(TxnLog::empty(), nextFn->argTypes);
auto [minCount, maxCount] = getParameterExtents(TxnLog::empty(), nextFn->argTypes, /*includeHiddenVariadics*/ true);
if (minCount > 2)
reportError(CountMismatch{2, minCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
reportError(CountMismatch{2, std::nullopt, minCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
if (maxCount && *maxCount < 2)
reportError(CountMismatch{2, *maxCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
reportError(CountMismatch{2, std::nullopt, *maxCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
const std::vector<TypeId> flattenedArgTypes = flatten(tempArena, nextFn->argTypes, 2);
const std::vector<TypeId> flattenedArgTypes = flatten(arena, nextFn->argTypes, 2);
const auto [argTypes, argsTail] = Luau::flatten(nextFn->argTypes);
size_t firstIterationArgCount = iteratorTypes.empty() ? 0 : iteratorTypes.size() - 1;
size_t actualArgCount = expectedVariableTypes.size();
if (firstIterationArgCount < minCount)
reportError(CountMismatch{2, firstIterationArgCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
reportError(CountMismatch{2, std::nullopt, firstIterationArgCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
else if (actualArgCount < minCount)
reportError(CountMismatch{2, actualArgCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
reportError(CountMismatch{2, std::nullopt, actualArgCount, CountMismatch::Arg}, forInStatement->vars.data[0]->location);
if (iteratorTypes.size() >= 2 && flattenedArgTypes.size() > 0)
{

View File

@ -32,13 +32,15 @@ LUAU_FASTINTVARIABLE(LuauCheckRecursionLimit, 300)
LUAU_FASTINTVARIABLE(LuauVisitRecursionLimit, 500)
LUAU_FASTFLAG(LuauKnowsTheDataModel3)
LUAU_FASTFLAG(LuauAutocompleteDynamicLimits)
LUAU_FASTFLAGVARIABLE(LuauFunctionArgMismatchDetails, false)
LUAU_FASTFLAGVARIABLE(LuauInplaceDemoteSkipAllBound, false)
LUAU_FASTFLAGVARIABLE(LuauLowerBoundsCalculation, false)
LUAU_FASTFLAGVARIABLE(DebugLuauFreezeDuringUnification, false)
LUAU_FASTFLAGVARIABLE(LuauSelfCallAutocompleteFix3, false)
LUAU_FASTFLAGVARIABLE(LuauReturnAnyInsteadOfICE, false) // Eventually removed as false.
LUAU_FASTFLAGVARIABLE(DebugLuauSharedSelf, false);
LUAU_FASTFLAGVARIABLE(DebugLuauSharedSelf, false)
LUAU_FASTFLAGVARIABLE(LuauUnknownAndNeverType, false)
LUAU_FASTFLAGVARIABLE(LuauCallUnifyPackTails, false)
LUAU_FASTFLAGVARIABLE(LuauCheckGenericHOFTypes, false)
LUAU_FASTFLAGVARIABLE(LuauBinaryNeedsExpectedTypesToo, false)
LUAU_FASTFLAGVARIABLE(LuauNeverTypesAndOperatorsInference, false)
@ -1346,7 +1348,7 @@ void TypeChecker::check(const ScopePtr& scope, const AstStatForIn& forin)
}
Unifier state = mkUnifier(loopScope, firstValue->location);
checkArgumentList(loopScope, state, argPack, iterFunc->argTypes, /*argLocations*/ {});
checkArgumentList(loopScope, *firstValue, state, argPack, iterFunc->argTypes, /*argLocations*/ {});
state.log.commit();
@ -3666,8 +3668,8 @@ WithPredicate<TypePackId> TypeChecker::checkExprPackHelper(const ScopePtr& scope
}
}
void TypeChecker::checkArgumentList(
const ScopePtr& scope, Unifier& state, TypePackId argPack, TypePackId paramPack, const std::vector<Location>& argLocations)
void TypeChecker::checkArgumentList(const ScopePtr& scope, const AstExpr& funName, Unifier& state, TypePackId argPack, TypePackId paramPack,
const std::vector<Location>& argLocations)
{
/* Important terminology refresher:
* A function requires parameters.
@ -3679,14 +3681,27 @@ void TypeChecker::checkArgumentList(
size_t paramIndex = 0;
auto reportCountMismatchError = [&state, &argLocations, paramPack, argPack]() {
auto reportCountMismatchError = [&state, &argLocations, paramPack, argPack, &funName]() {
// For this case, we want the error span to cover every errant extra parameter
Location location = state.location;
if (!argLocations.empty())
location = {state.location.begin, argLocations.back().end};
if (FFlag::LuauFunctionArgMismatchDetails)
{
std::string namePath;
if (std::optional<LValue> lValue = tryGetLValue(funName))
namePath = toString(*lValue);
auto [minParams, optMaxParams] = getParameterExtents(&state.log, paramPack);
state.reportError(TypeError{location,
CountMismatch{minParams, optMaxParams, std::distance(begin(argPack), end(argPack)), CountMismatch::Context::Arg, false, namePath}});
}
else
{
size_t minParams = getParameterExtents(&state.log, paramPack).first;
state.reportError(TypeError{location, CountMismatch{minParams, std::distance(begin(argPack), end(argPack))}});
state.reportError(TypeError{location, CountMismatch{minParams, std::nullopt, std::distance(begin(argPack), end(argPack))}});
}
};
while (true)
@ -3698,11 +3713,8 @@ void TypeChecker::checkArgumentList(
std::optional<TypePackId> argTail = argIter.tail();
std::optional<TypePackId> paramTail = paramIter.tail();
// If we hit the end of both type packs simultaneously, then there are definitely no further type
// errors to report. All we need to do is tie up any free tails.
//
// If one side has a free tail and the other has none at all, we create an empty pack and bind the
// free tail to that.
// If we hit the end of both type packs simultaneously, we have to unify them.
// But if one side has a free tail and the other has none at all, we create an empty pack and bind the free tail to that.
if (argTail)
{
@ -3713,6 +3725,10 @@ void TypeChecker::checkArgumentList(
else
state.log.replace(*argTail, TypePackVar(TypePack{{}}));
}
else if (FFlag::LuauCallUnifyPackTails && paramTail)
{
state.tryUnify(*argTail, *paramTail);
}
}
else if (paramTail)
{
@ -3784,12 +3800,25 @@ void TypeChecker::checkArgumentList(
} // ok
else
{
size_t minParams = getParameterExtents(&state.log, paramPack).first;
auto [minParams, optMaxParams] = getParameterExtents(&state.log, paramPack);
std::optional<TypePackId> tail = flatten(paramPack, state.log).second;
bool isVariadic = tail && Luau::isVariadic(*tail);
state.reportError(TypeError{state.location, CountMismatch{minParams, paramIndex, CountMismatch::Context::Arg, isVariadic}});
if (FFlag::LuauFunctionArgMismatchDetails)
{
std::string namePath;
if (std::optional<LValue> lValue = tryGetLValue(funName))
namePath = toString(*lValue);
state.reportError(TypeError{
state.location, CountMismatch{minParams, optMaxParams, paramIndex, CountMismatch::Context::Arg, isVariadic, namePath}});
}
else
{
state.reportError(
TypeError{state.location, CountMismatch{minParams, std::nullopt, paramIndex, CountMismatch::Context::Arg, isVariadic}});
}
return;
}
++paramIter;
@ -4185,13 +4214,13 @@ std::optional<WithPredicate<TypePackId>> TypeChecker::checkCallOverload(const Sc
Unifier state = mkUnifier(scope, expr.location);
// Unify return types
checkArgumentList(scope, state, retPack, ftv->retTypes, /*argLocations*/ {});
checkArgumentList(scope, *expr.func, state, retPack, ftv->retTypes, /*argLocations*/ {});
if (!state.errors.empty())
{
return {};
}
checkArgumentList(scope, state, argPack, ftv->argTypes, *argLocations);
checkArgumentList(scope, *expr.func, state, argPack, ftv->argTypes, *argLocations);
if (!state.errors.empty())
{
@ -4245,7 +4274,7 @@ bool TypeChecker::handleSelfCallMismatch(const ScopePtr& scope, const AstExprCal
TypePackId editedArgPack = addTypePack(TypePack{editedParamList});
Unifier editedState = mkUnifier(scope, expr.location);
checkArgumentList(scope, editedState, editedArgPack, ftv->argTypes, editedArgLocations);
checkArgumentList(scope, *expr.func, editedState, editedArgPack, ftv->argTypes, editedArgLocations);
if (editedState.errors.empty())
{
@ -4276,7 +4305,7 @@ bool TypeChecker::handleSelfCallMismatch(const ScopePtr& scope, const AstExprCal
Unifier editedState = mkUnifier(scope, expr.location);
checkArgumentList(scope, editedState, editedArgPack, ftv->argTypes, editedArgLocations);
checkArgumentList(scope, *expr.func, editedState, editedArgPack, ftv->argTypes, editedArgLocations);
if (editedState.errors.empty())
{
@ -4345,8 +4374,8 @@ void TypeChecker::reportOverloadResolutionError(const ScopePtr& scope, const Ast
// Unify return types
if (const FunctionTypeVar* ftv = get<FunctionTypeVar>(overload))
{
checkArgumentList(scope, state, retPack, ftv->retTypes, {});
checkArgumentList(scope, state, argPack, ftv->argTypes, argLocations);
checkArgumentList(scope, *expr.func, state, retPack, ftv->retTypes, {});
checkArgumentList(scope, *expr.func, state, argPack, ftv->argTypes, argLocations);
}
if (state.errors.empty())

View File

@ -357,10 +357,15 @@ bool isVariadic(TypePackId tp, const TxnLog& log)
if (!tail)
return false;
if (log.get<GenericTypePack>(*tail))
return isVariadicTail(*tail, log);
}
bool isVariadicTail(TypePackId tp, const TxnLog& log, bool includeHiddenVariadics)
{
if (log.get<GenericTypePack>(tp))
return true;
if (auto vtp = log.get<VariadicTypePack>(*tail); vtp && !vtp->hidden)
if (auto vtp = log.get<VariadicTypePack>(tp); vtp && (includeHiddenVariadics || !vtp->hidden))
return true;
return false;

View File

@ -6,6 +6,8 @@
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
LUAU_FASTFLAG(LuauFunctionArgMismatchDetails)
namespace Luau
{
@ -193,7 +195,7 @@ std::optional<TypeId> getIndexTypeFromType(const ScopePtr& scope, ErrorVec& erro
return std::nullopt;
}
std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log, TypePackId tp)
std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log, TypePackId tp, bool includeHiddenVariadics)
{
size_t minCount = 0;
size_t optionalCount = 0;
@ -216,7 +218,7 @@ std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log,
++it;
}
if (it.tail())
if (it.tail() && (!FFlag::LuauFunctionArgMismatchDetails || isVariadicTail(*it.tail(), *log, includeHiddenVariadics)))
return {minCount, std::nullopt};
else
return {minCount, minCount + optionalCount};

View File

@ -1133,14 +1133,14 @@ std::optional<WithPredicate<TypePackId>> magicFunctionFormat(
size_t numExpectedParams = expected.size() + 1; // + 1 for the format string
if (numExpectedParams != numActualParams && (!tail || numExpectedParams < numActualParams))
typechecker.reportError(TypeError{expr.location, CountMismatch{numExpectedParams, numActualParams}});
typechecker.reportError(TypeError{expr.location, CountMismatch{numExpectedParams, std::nullopt, numActualParams}});
}
else
{
size_t actualParamSize = params.size() - paramOffset;
if (expected.size() != actualParamSize && (!tail || expected.size() < actualParamSize))
typechecker.reportError(TypeError{expr.location, CountMismatch{expected.size(), actualParamSize}});
typechecker.reportError(TypeError{expr.location, CountMismatch{expected.size(), std::nullopt, actualParamSize}});
}
return WithPredicate<TypePackId>{arena.addTypePack({typechecker.stringType})};
}

View File

@ -22,6 +22,7 @@ LUAU_FASTFLAG(LuauErrorRecoveryType);
LUAU_FASTFLAG(LuauUnknownAndNeverType)
LUAU_FASTFLAGVARIABLE(LuauScalarShapeSubtyping, false)
LUAU_FASTFLAG(LuauClassTypeVarsInSubstitution)
LUAU_FASTFLAG(LuauCallUnifyPackTails)
namespace Luau
{
@ -1159,7 +1160,7 @@ void Unifier::tryUnify_(TypePackId subTp, TypePackId superTp, bool isFunctionCal
size_t actualSize = size(subTp);
if (ctx == CountMismatch::Result)
std::swap(expectedSize, actualSize);
reportError(TypeError{location, CountMismatch{expectedSize, actualSize, ctx}});
reportError(TypeError{location, CountMismatch{expectedSize, std::nullopt, actualSize, ctx}});
while (superIter.good())
{
@ -2118,6 +2119,15 @@ void Unifier::unifyLowerBound(TypePackId subTy, TypePackId superTy, TypeLevel de
for (; superIter != superEndIter; ++superIter)
tp->head.push_back(*superIter);
}
else if (const VariadicTypePack* subVariadic = log.getMutable<VariadicTypePack>(subTailPack);
subVariadic && FFlag::LuauCallUnifyPackTails)
{
while (superIter != superEndIter)
{
tryUnify_(subVariadic->ty, *superIter);
++superIter;
}
}
}
else
{
@ -2125,7 +2135,7 @@ void Unifier::unifyLowerBound(TypePackId subTy, TypePackId superTy, TypeLevel de
{
if (!isOptional(*superIter))
{
errors.push_back(TypeError{location, CountMismatch{size(superTy), size(subTy), CountMismatch::Return}});
errors.push_back(TypeError{location, CountMismatch{size(superTy), std::nullopt, size(subTy), CountMismatch::Return}});
return;
}
++superIter;

View File

@ -24,7 +24,7 @@ struct CodeAllocator
void* context = nullptr;
// Called when new block is created to create and setup the unwinding information for all the code in the block
// Some platforms require this data to be placed inside the block itself, so we also return 'unwindDataSizeInBlock'
// If data is placed inside the block itself (some platforms require this), we also return 'unwindDataSizeInBlock'
void* (*createBlockUnwindInfo)(void* context, uint8_t* block, size_t blockSize, size_t& unwindDataSizeInBlock) = nullptr;
// Called to destroy unwinding information returned by 'createBlockUnwindInfo'

View File

@ -0,0 +1,17 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <stddef.h>
#include <stdint.h>
namespace Luau
{
namespace CodeGen
{
// context must be an UnwindBuilder
void* createBlockUnwindInfo(void* context, uint8_t* block, size_t blockSize, size_t& unwindDataSizeInBlock);
void destroyBlockUnwindInfo(void* context, void* unwindData);
} // namespace CodeGen
} // namespace Luau

View File

@ -0,0 +1,35 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/RegisterX64.h"
#include <stddef.h>
#include <stdint.h>
namespace Luau
{
namespace CodeGen
{
class UnwindBuilder
{
public:
virtual ~UnwindBuilder() {}
virtual void start() = 0;
virtual void spill(int espOffset, RegisterX64 reg) = 0;
virtual void save(RegisterX64 reg) = 0;
virtual void allocStack(int size) = 0;
virtual void setupFrameReg(RegisterX64 reg, int espOffset) = 0;
virtual void finish() = 0;
virtual size_t getSize() const = 0;
// This will place the unwinding data at the target address and might update values of some fields
virtual void finalize(char* target, void* funcAddress, size_t funcSize) const = 0;
};
} // namespace CodeGen
} // namespace Luau

View File

@ -0,0 +1,40 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/RegisterX64.h"
#include "UnwindBuilder.h"
namespace Luau
{
namespace CodeGen
{
class UnwindBuilderDwarf2 : public UnwindBuilder
{
public:
void start() override;
void spill(int espOffset, RegisterX64 reg) override;
void save(RegisterX64 reg) override;
void allocStack(int size) override;
void setupFrameReg(RegisterX64 reg, int espOffset) override;
void finish() override;
size_t getSize() const override;
void finalize(char* target, void* funcAddress, size_t funcSize) const override;
private:
static const unsigned kRawDataLimit = 128;
char rawData[kRawDataLimit];
char* pos = rawData;
uint32_t stackOffset = 0;
// We will remember the FDE location to write some of the fields like entry length, function start and size later
char* fdeEntryStart = nullptr;
};
} // namespace CodeGen
} // namespace Luau

View File

@ -0,0 +1,51 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/RegisterX64.h"
#include "UnwindBuilder.h"
#include <vector>
namespace Luau
{
namespace CodeGen
{
// This struct matches the layout of UNWIND_CODE from ehdata.h
struct UnwindCodeWin
{
uint8_t offset;
uint8_t opcode : 4;
uint8_t opinfo : 4;
};
class UnwindBuilderWin : public UnwindBuilder
{
public:
void start() override;
void spill(int espOffset, RegisterX64 reg) override;
void save(RegisterX64 reg) override;
void allocStack(int size) override;
void setupFrameReg(RegisterX64 reg, int espOffset) override;
void finish() override;
size_t getSize() const override;
void finalize(char* target, void* funcAddress, size_t funcSize) const override;
private:
// Windows unwind codes are written in reverse, so we have to collect them all first
std::vector<UnwindCodeWin> unwindCodes;
uint8_t prologSize = 0;
RegisterX64 frameReg = rax; // rax means that frame register is not used
uint8_t frameRegOffset = 0;
uint32_t stackOffset = 0;
size_t infoSize = 0;
};
} // namespace CodeGen
} // namespace Luau

View File

@ -6,8 +6,13 @@
#include <string.h>
#if defined(_WIN32)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
const size_t kPageSize = 4096;
@ -135,17 +140,29 @@ bool CodeAllocator::allocate(
if (codeSize)
memcpy(blockPos + codeOffset, code, codeSize);
size_t pageSize = alignToPageSize(unwindInfoSize + totalSize);
size_t pageAlignedSize = alignToPageSize(unwindInfoSize + totalSize);
makePagesExecutable(blockPos, pageSize);
makePagesExecutable(blockPos, pageAlignedSize);
flushInstructionCache(blockPos + codeOffset, codeSize);
result = blockPos + unwindInfoSize;
resultSize = totalSize;
resultCodeStart = blockPos + codeOffset;
blockPos += pageSize;
LUAU_ASSERT((uintptr_t(blockPos) & (kPageSize - 1)) == 0); // Allocation ends on page boundary
// Ensure that future allocations from the block start from a page boundary.
// This is important since we use W^X, and writing to the previous page would require briefly removing
// executable bit from it, which may result in access violations if that code is being executed concurrently.
if (pageAlignedSize <= size_t(blockEnd - blockPos))
{
blockPos += pageAlignedSize;
LUAU_ASSERT((uintptr_t(blockPos) & (kPageSize - 1)) == 0);
LUAU_ASSERT(blockPos <= blockEnd);
}
else
{
// Future allocations will need to allocate fresh blocks
blockPos = blockEnd;
}
return true;
}

View File

@ -0,0 +1,123 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/CodeBlockUnwind.h"
#include "Luau/UnwindBuilder.h"
#include <string.h>
#if defined(_WIN32) && defined(_M_X64)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
#elif !defined(_WIN32)
// Defined in unwind.h which may not be easily discoverable on various platforms
extern "C" void __register_frame(const void*);
extern "C" void __deregister_frame(const void*);
#endif
#if defined(__APPLE__)
// On Mac, each FDE inside eh_frame section has to be handled separately
static void visitFdeEntries(char* pos, void (*cb)(const void*))
{
for (;;)
{
unsigned partLength;
memcpy(&partLength, pos, sizeof(partLength));
if (partLength == 0) // Zero-length section signals completion
break;
unsigned partId;
memcpy(&partId, pos + 4, sizeof(partId));
if (partId != 0) // Skip CIE part
cb(pos); // CIE is found using an offset in FDE
pos += partLength + 4;
}
}
#endif
namespace Luau
{
namespace CodeGen
{
void* createBlockUnwindInfo(void* context, uint8_t* block, size_t blockSize, size_t& unwindDataSizeInBlock)
{
#if defined(_WIN32) && defined(_M_X64)
UnwindBuilder* unwind = (UnwindBuilder*)context;
// All unwinding related data is placed together at the start of the block
size_t unwindSize = sizeof(RUNTIME_FUNCTION) + unwind->getSize();
unwindSize = (unwindSize + 15) & ~15; // Align to 16 bytes
LUAU_ASSERT(blockSize >= unwindSize);
RUNTIME_FUNCTION* runtimeFunc = (RUNTIME_FUNCTION*)block;
runtimeFunc->BeginAddress = DWORD(unwindSize); // Code will start after the unwind info
runtimeFunc->EndAddress = DWORD(blockSize); // Whole block is a part of a 'single function'
runtimeFunc->UnwindInfoAddress = DWORD(sizeof(RUNTIME_FUNCTION)); // Unwind info is placed at the start of the block
char* unwindData = (char*)block + runtimeFunc->UnwindInfoAddress;
unwind->finalize(unwindData, block + unwindSize, blockSize - unwindSize);
if (!RtlAddFunctionTable(runtimeFunc, 1, uintptr_t(block)))
{
LUAU_ASSERT(!"failed to allocate function table");
return nullptr;
}
unwindDataSizeInBlock = unwindSize;
return block;
#elif !defined(_WIN32)
UnwindBuilder* unwind = (UnwindBuilder*)context;
// All unwinding related data is placed together at the start of the block
size_t unwindSize = unwind->getSize();
unwindSize = (unwindSize + 15) & ~15; // Align to 16 bytes
LUAU_ASSERT(blockSize >= unwindSize);
char* unwindData = (char*)block;
unwind->finalize(unwindData, block, blockSize);
#if defined(__APPLE__)
visitFdeEntries(unwindData, __register_frame);
#else
__register_frame(unwindData);
#endif
unwindDataSizeInBlock = unwindSize;
return block;
#endif
return nullptr;
}
void destroyBlockUnwindInfo(void* context, void* unwindData)
{
#if defined(_WIN32) && defined(_M_X64)
RUNTIME_FUNCTION* runtimeFunc = (RUNTIME_FUNCTION*)unwindData;
if (!RtlDeleteFunctionTable(runtimeFunc))
LUAU_ASSERT(!"failed to deallocate function table");
#elif !defined(_WIN32)
#if defined(__APPLE__)
visitFdeEntries((char*)unwindData, __deregister_frame);
#else
__deregister_frame(unwindData);
#endif
#endif
}
} // namespace CodeGen
} // namespace Luau

View File

@ -0,0 +1,253 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/UnwindBuilderDwarf2.h"
#include <string.h>
// General information about Dwarf2 format can be found at:
// https://dwarfstd.org/doc/dwarf-2.0.0.pdf [DWARF Debugging Information Format]
// Main part for async exception unwinding is in section '6.4 Call Frame Information'
// Information about System V ABI (AMD64) can be found at:
// https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf [System V Application Binary Interface (AMD64 Architecture Processor Supplement)]
// Interaction between Dwarf2 and System V ABI can be found in sections '3.6.2 DWARF Register Number Mapping' and '4.2.4 EH_FRAME sections'
static char* writeu8(char* target, uint8_t value)
{
memcpy(target, &value, sizeof(value));
return target + sizeof(value);
}
static char* writeu32(char* target, uint32_t value)
{
memcpy(target, &value, sizeof(value));
return target + sizeof(value);
}
static char* writeu64(char* target, uint64_t value)
{
memcpy(target, &value, sizeof(value));
return target + sizeof(value);
}
static char* writeuleb128(char* target, uint64_t value)
{
do
{
char byte = value & 0x7f;
value >>= 7;
if (value)
byte |= 0x80;
*target++ = byte;
} while (value);
return target;
}
// Call frame instruction opcodes
#define DW_CFA_advance_loc 0x40
#define DW_CFA_offset 0x80
#define DW_CFA_restore 0xc0
#define DW_CFA_nop 0x00
#define DW_CFA_set_loc 0x01
#define DW_CFA_advance_loc1 0x02
#define DW_CFA_advance_loc2 0x03
#define DW_CFA_advance_loc4 0x04
#define DW_CFA_offset_extended 0x05
#define DW_CFA_restore_extended 0x06
#define DW_CFA_undefined 0x07
#define DW_CFA_same_value 0x08
#define DW_CFA_register 0x09
#define DW_CFA_remember_state 0x0a
#define DW_CFA_restore_state 0x0b
#define DW_CFA_def_cfa 0x0c
#define DW_CFA_def_cfa_register 0x0d
#define DW_CFA_def_cfa_offset 0x0e
#define DW_CFA_def_cfa_expression 0x0f
#define DW_CFA_expression 0x10
#define DW_CFA_offset_extended_sf 0x11
#define DW_CFA_def_cfa_sf 0x12
#define DW_CFA_def_cfa_offset_sf 0x13
#define DW_CFA_val_offset 0x14
#define DW_CFA_val_offset_sf 0x15
#define DW_CFA_val_expression 0x16
#define DW_CFA_lo_user 0x1c
#define DW_CFA_hi_user 0x3f
// Register numbers for x64
#define DW_REG_RAX 0
#define DW_REG_RDX 1
#define DW_REG_RCX 2
#define DW_REG_RBX 3
#define DW_REG_RSI 4
#define DW_REG_RDI 5
#define DW_REG_RBP 6
#define DW_REG_RSP 7
#define DW_REG_R8 8
#define DW_REG_R9 9
#define DW_REG_R10 10
#define DW_REG_R11 11
#define DW_REG_R12 12
#define DW_REG_R13 13
#define DW_REG_R14 14
#define DW_REG_R15 15
#define DW_REG_RA 16
const int regIndexToDwRegX64[16] = {DW_REG_RAX, DW_REG_RCX, DW_REG_RDX, DW_REG_RBX, DW_REG_RSP, DW_REG_RBP, DW_REG_RSI, DW_REG_RDI, DW_REG_R8,
DW_REG_R9, DW_REG_R10, DW_REG_R11, DW_REG_R12, DW_REG_R13, DW_REG_R14, DW_REG_R15};
const int kCodeAlignFactor = 1;
const int kDataAlignFactor = 8;
const int kDwarfAlign = 8;
const int kFdeInitialLocationOffset = 8;
const int kFdeAddressRangeOffset = 16;
// Define canonical frame address expression as [reg + offset]
static char* defineCfaExpression(char* pos, int dwReg, uint32_t stackOffset)
{
pos = writeu8(pos, DW_CFA_def_cfa);
pos = writeuleb128(pos, dwReg);
pos = writeuleb128(pos, stackOffset);
return pos;
}
// Update offset value in canonical frame address expression
static char* defineCfaExpressionOffset(char* pos, uint32_t stackOffset)
{
pos = writeu8(pos, DW_CFA_def_cfa_offset);
pos = writeuleb128(pos, stackOffset);
return pos;
}
static char* defineSavedRegisterLocation(char* pos, int dwReg, uint32_t stackOffset)
{
LUAU_ASSERT(stackOffset % kDataAlignFactor == 0 && "stack offsets have to be measured in kDataAlignFactor units");
if (dwReg <= 15)
{
pos = writeu8(pos, DW_CFA_offset + dwReg);
}
else
{
pos = writeu8(pos, DW_CFA_offset_extended);
pos = writeuleb128(pos, dwReg);
}
pos = writeuleb128(pos, stackOffset / kDataAlignFactor);
return pos;
}
static char* advanceLocation(char* pos, uint8_t offset)
{
pos = writeu8(pos, DW_CFA_advance_loc1);
pos = writeu8(pos, offset);
return pos;
}
static char* alignPosition(char* start, char* pos)
{
size_t size = pos - start;
size_t pad = ((size + kDwarfAlign - 1) & ~(kDwarfAlign - 1)) - size;
for (size_t i = 0; i < pad; i++)
pos = writeu8(pos, DW_CFA_nop);
return pos;
}
namespace Luau
{
namespace CodeGen
{
void UnwindBuilderDwarf2::start()
{
char* cieLength = pos;
pos = writeu32(pos, 0); // Length (to be filled later)
pos = writeu32(pos, 0); // CIE id. 0 -- .eh_frame
pos = writeu8(pos, 1); // Version
pos = writeu8(pos, 0); // CIE augmentation String ""
pos = writeuleb128(pos, kCodeAlignFactor); // Code align factor
pos = writeuleb128(pos, -kDataAlignFactor & 0x7f); // Data align factor of (as signed LEB128)
pos = writeu8(pos, DW_REG_RA); // Return address register
// Optional CIE augmentation section (not present)
// Call frame instructions (common for all FDEs, of which we have 1)
stackOffset = 8; // Return address was pushed by calling the function
pos = defineCfaExpression(pos, DW_REG_RSP, stackOffset); // Define CFA to be the rsp + 8
pos = defineSavedRegisterLocation(pos, DW_REG_RA, 8); // Define return address register (RA) to be located at CFA - 8
pos = alignPosition(cieLength, pos);
writeu32(cieLength, unsigned(pos - cieLength - 4)); // Length field itself is excluded from length
fdeEntryStart = pos; // Will be written at the end
pos = writeu32(pos, 0); // Length (to be filled later)
pos = writeu32(pos, unsigned(pos - rawData)); // CIE pointer
pos = writeu64(pos, 0); // Initial location (to be filled later)
pos = writeu64(pos, 0); // Address range (to be filled later)
// Optional CIE augmentation section (not present)
// Function call frame instructions to follow
}
void UnwindBuilderDwarf2::spill(int espOffset, RegisterX64 reg)
{
pos = advanceLocation(pos, 5); // REX.W mov [rsp + imm8], reg
}
void UnwindBuilderDwarf2::save(RegisterX64 reg)
{
stackOffset += 8;
pos = advanceLocation(pos, 2); // REX.W push reg
pos = defineCfaExpressionOffset(pos, stackOffset);
pos = defineSavedRegisterLocation(pos, regIndexToDwRegX64[reg.index], stackOffset);
}
void UnwindBuilderDwarf2::allocStack(int size)
{
stackOffset += size;
pos = advanceLocation(pos, 4); // REX.W sub rsp, imm8
pos = defineCfaExpressionOffset(pos, stackOffset);
}
void UnwindBuilderDwarf2::setupFrameReg(RegisterX64 reg, int espOffset)
{
// Not required for unwinding
}
void UnwindBuilderDwarf2::finish()
{
LUAU_ASSERT(stackOffset % 16 == 0 && "stack has to be aligned to 16 bytes after prologue");
pos = alignPosition(fdeEntryStart, pos);
writeu32(fdeEntryStart, unsigned(pos - fdeEntryStart - 4)); // Length field itself is excluded from length
// Terminate section
pos = writeu32(pos, 0);
LUAU_ASSERT(getSize() <= kRawDataLimit);
}
size_t UnwindBuilderDwarf2::getSize() const
{
return size_t(pos - rawData);
}
void UnwindBuilderDwarf2::finalize(char* target, void* funcAddress, size_t funcSize) const
{
memcpy(target, rawData, getSize());
unsigned fdeEntryStartPos = unsigned(fdeEntryStart - rawData);
writeu64(target + fdeEntryStartPos + kFdeInitialLocationOffset, uintptr_t(funcAddress));
writeu64(target + fdeEntryStartPos + kFdeAddressRangeOffset, funcSize);
}
} // namespace CodeGen
} // namespace Luau

View File

@ -0,0 +1,120 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/UnwindBuilderWin.h"
#include <string.h>
// Information about the Windows x64 unwinding data setup can be found at:
// https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64 [x64 exception handling]
#define UWOP_PUSH_NONVOL 0
#define UWOP_ALLOC_LARGE 1
#define UWOP_ALLOC_SMALL 2
#define UWOP_SET_FPREG 3
#define UWOP_SAVE_NONVOL 4
#define UWOP_SAVE_NONVOL_FAR 5
#define UWOP_SAVE_XMM128 8
#define UWOP_SAVE_XMM128_FAR 9
#define UWOP_PUSH_MACHFRAME 10
namespace Luau
{
namespace CodeGen
{
// This struct matches the layout of UNWIND_INFO from ehdata.h
struct UnwindInfoWin
{
uint8_t version : 3;
uint8_t flags : 5;
uint8_t prologsize;
uint8_t unwindcodecount;
uint8_t framereg : 4;
uint8_t frameregoff : 4;
};
void UnwindBuilderWin::start()
{
stackOffset = 8; // Return address was pushed by calling the function
unwindCodes.reserve(16);
}
void UnwindBuilderWin::spill(int espOffset, RegisterX64 reg)
{
prologSize += 5; // REX.W mov [rsp + imm8], reg
}
void UnwindBuilderWin::save(RegisterX64 reg)
{
prologSize += 2; // REX.W push reg
stackOffset += 8;
unwindCodes.push_back({prologSize, UWOP_PUSH_NONVOL, reg.index});
}
void UnwindBuilderWin::allocStack(int size)
{
LUAU_ASSERT(size >= 8 && size <= 128 && size % 8 == 0);
prologSize += 4; // REX.W sub rsp, imm8
stackOffset += size;
unwindCodes.push_back({prologSize, UWOP_ALLOC_SMALL, uint8_t((size - 8) / 8)});
}
void UnwindBuilderWin::setupFrameReg(RegisterX64 reg, int espOffset)
{
LUAU_ASSERT(espOffset < 256 && espOffset % 16 == 0);
frameReg = reg;
frameRegOffset = uint8_t(espOffset / 16);
prologSize += 5; // REX.W lea rbp, [rsp + imm8]
unwindCodes.push_back({prologSize, UWOP_SET_FPREG, frameRegOffset});
}
void UnwindBuilderWin::finish()
{
// Windows unwind code count is stored in uint8_t, so we can't have more
LUAU_ASSERT(unwindCodes.size() < 256);
LUAU_ASSERT(stackOffset % 16 == 0 && "stack has to be aligned to 16 bytes after prologue");
size_t codeArraySize = unwindCodes.size();
codeArraySize = (codeArraySize + 1) & ~1; // Size has to be even, but unwind code count doesn't have to
infoSize = sizeof(UnwindInfoWin) + sizeof(UnwindCodeWin) * codeArraySize;
}
size_t UnwindBuilderWin::getSize() const
{
return infoSize;
}
void UnwindBuilderWin::finalize(char* target, void* funcAddress, size_t funcSize) const
{
UnwindInfoWin info;
info.version = 1;
info.flags = 0; // No EH
info.prologsize = prologSize;
info.unwindcodecount = uint8_t(unwindCodes.size());
info.framereg = frameReg.index;
info.frameregoff = frameRegOffset;
memcpy(target, &info, sizeof(info));
target += sizeof(UnwindInfoWin);
if (!unwindCodes.empty())
{
// Copy unwind codes in reverse order
// Some unwind codes take up two array slots, but we don't use those atm
char* pos = target + sizeof(UnwindCodeWin) * (unwindCodes.size() - 1);
for (size_t i = 0; i < unwindCodes.size(); i++)
{
memcpy(pos, &unwindCodes[i], sizeof(UnwindCodeWin));
pos -= sizeof(UnwindCodeWin);
}
}
}
} // namespace CodeGen
} // namespace Luau

View File

@ -411,7 +411,7 @@ enum LuauOpcode
enum LuauBytecodeTag
{
// Bytecode version; runtime supports [MIN, MAX], compiler emits TARGET by default but may emit a higher version when flags are enabled
LBC_VERSION_MIN = 2,
LBC_VERSION_MIN = 3,
LBC_VERSION_MAX = 3,
LBC_VERSION_TARGET = 3,
// Types of constant table entries

View File

@ -57,13 +57,20 @@ target_sources(Luau.Compiler PRIVATE
target_sources(Luau.CodeGen PRIVATE
CodeGen/include/Luau/AssemblyBuilderX64.h
CodeGen/include/Luau/CodeAllocator.h
CodeGen/include/Luau/CodeBlockUnwind.h
CodeGen/include/Luau/Condition.h
CodeGen/include/Luau/Label.h
CodeGen/include/Luau/OperandX64.h
CodeGen/include/Luau/RegisterX64.h
CodeGen/include/Luau/UnwindBuilder.h
CodeGen/include/Luau/UnwindBuilderDwarf2.h
CodeGen/include/Luau/UnwindBuilderWin.h
CodeGen/src/AssemblyBuilderX64.cpp
CodeGen/src/CodeAllocator.cpp
CodeGen/src/CodeBlockUnwind.cpp
CodeGen/src/UnwindBuilderDwarf2.cpp
CodeGen/src/UnwindBuilderWin.cpp
)
# Luau.Analysis Sources
@ -258,9 +265,13 @@ endif()
if(TARGET Luau.UnitTest)
# Luau.UnitTest Sources
target_sources(Luau.UnitTest PRIVATE
tests/AstQueryDsl.h
tests/ConstraintGraphBuilderFixture.h
tests/Fixture.h
tests/IostreamOptional.h
tests/ScopedFlags.h
tests/AstQueryDsl.cpp
tests/ConstraintGraphBuilderFixture.cpp
tests/Fixture.cpp
tests/AssemblyBuilderX64.test.cpp
tests/AstJsonEncoder.test.cpp

View File

@ -34,8 +34,6 @@
* therefore call luaC_checkGC before luaC_threadbarrier to guarantee the object is pushed to a gray thread.
*/
LUAU_FASTFLAG(LuauSimplerUpval)
const char* lua_ident = "$Lua: Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio $\n"
"$Authors: R. Ierusalimschy, L. H. de Figueiredo & W. Celes $\n"
"$URL: www.lua.org $\n";
@ -1298,8 +1296,6 @@ const char* lua_setupvalue(lua_State* L, int funcindex, int n)
L->top--;
setobj(L, val, L->top);
luaC_barrier(L, clvalue(fi), L->top);
if (!FFlag::LuauSimplerUpval)
luaC_upvalbarrier(L, cast_to(UpVal*, NULL), val);
}
return name;
}

View File

@ -243,14 +243,14 @@ void luaD_call(lua_State* L, StkId func, int nResults)
{ // is a Lua function?
L->ci->flags |= LUA_CALLINFO_RETURN; // luau_execute will stop after returning from the stack frame
int oldactive = luaC_threadactive(L);
l_setbit(L->stackstate, THREAD_ACTIVEBIT);
bool oldactive = L->isactive;
L->isactive = true;
luaC_threadbarrier(L);
luau_execute(L); // call it
if (!oldactive)
resetbit(L->stackstate, THREAD_ACTIVEBIT);
L->isactive = false;
}
L->nCcalls--;
@ -427,7 +427,7 @@ static int resume_error(lua_State* L, const char* msg)
static void resume_finish(lua_State* L, int status)
{
L->nCcalls = L->baseCcalls;
resetbit(L->stackstate, THREAD_ACTIVEBIT);
L->isactive = false;
if (status != 0)
{ // error?
@ -452,7 +452,7 @@ int lua_resume(lua_State* L, lua_State* from, int nargs)
return resume_error(L, "C stack overflow");
L->baseCcalls = ++L->nCcalls;
l_setbit(L->stackstate, THREAD_ACTIVEBIT);
L->isactive = true;
luaC_threadbarrier(L);
@ -481,7 +481,7 @@ int lua_resumeerror(lua_State* L, lua_State* from)
return resume_error(L, "C stack overflow");
L->baseCcalls = ++L->nCcalls;
l_setbit(L->stackstate, THREAD_ACTIVEBIT);
L->isactive = true;
luaC_threadbarrier(L);
@ -546,7 +546,7 @@ int luaD_pcall(lua_State* L, Pfunc func, void* u, ptrdiff_t old_top, ptrdiff_t e
{
unsigned short oldnCcalls = L->nCcalls;
ptrdiff_t old_ci = saveci(L, L->ci);
int oldactive = luaC_threadactive(L);
bool oldactive = L->isactive;
int status = luaD_rawrunprotected(L, func, u);
if (status != 0)
{
@ -560,7 +560,7 @@ int luaD_pcall(lua_State* L, Pfunc func, void* u, ptrdiff_t old_top, ptrdiff_t e
// since the call failed with an error, we might have to reset the 'active' thread state
if (!oldactive)
resetbit(L->stackstate, THREAD_ACTIVEBIT);
L->isactive = false;
// Restore nCcalls before calling the debugprotectederror callback which may rely on the proper value to have been restored.
L->nCcalls = oldnCcalls;

View File

@ -6,9 +6,6 @@
#include "lmem.h"
#include "lgc.h"
LUAU_FASTFLAG(LuauSimplerUpval)
LUAU_FASTFLAG(LuauNoSleepBit)
Proto* luaF_newproto(lua_State* L)
{
Proto* f = luaM_newgco(L, Proto, sizeof(Proto), L->activememcat);
@ -74,21 +71,16 @@ UpVal* luaF_findupval(lua_State* L, StkId level)
UpVal* p;
while (*pp != NULL && (p = *pp)->v >= level)
{
LUAU_ASSERT(!FFlag::LuauSimplerUpval || !isdead(g, obj2gco(p)));
LUAU_ASSERT(!isdead(g, obj2gco(p)));
LUAU_ASSERT(upisopen(p));
if (p->v == level)
{ // found a corresponding upvalue?
if (!FFlag::LuauSimplerUpval && isdead(g, obj2gco(p))) // is it dead?
changewhite(obj2gco(p)); // resurrect it
return p;
}
pp = &p->u.open.threadnext;
}
LUAU_ASSERT(luaC_threadactive(L));
LUAU_ASSERT(!luaC_threadsleeping(L));
LUAU_ASSERT(!FFlag::LuauNoSleepBit || !isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
LUAU_ASSERT(L->isactive);
LUAU_ASSERT(!isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
UpVal* uv = luaM_newgco(L, UpVal, sizeof(UpVal), L->activememcat); // not found: create a new one
luaC_init(L, uv, LUA_TUPVAL);
@ -96,22 +88,8 @@ UpVal* luaF_findupval(lua_State* L, StkId level)
uv->v = level; // current value lives in the stack
// chain the upvalue in the threads open upvalue list at the proper position
if (FFlag::LuauSimplerUpval)
{
uv->u.open.threadnext = *pp;
*pp = uv;
}
else
{
UpVal* next = *pp;
uv->u.open.threadnext = next;
uv->u.open.threadprev = pp;
if (next)
next->u.open.threadprev = &uv->u.open.threadnext;
*pp = uv;
}
// double link the upvalue in the global open upvalue list
uv->u.open.prev = &g->uvhead;
@ -123,26 +101,8 @@ UpVal* luaF_findupval(lua_State* L, StkId level)
return uv;
}
void luaF_unlinkupval(UpVal* uv)
{
LUAU_ASSERT(!FFlag::LuauSimplerUpval);
// unlink upvalue from the global open upvalue list
LUAU_ASSERT(uv->u.open.next->u.open.prev == uv && uv->u.open.prev->u.open.next == uv);
uv->u.open.next->u.open.prev = uv->u.open.prev;
uv->u.open.prev->u.open.next = uv->u.open.next;
// unlink upvalue from the thread open upvalue list
*uv->u.open.threadprev = uv->u.open.threadnext;
if (UpVal* next = uv->u.open.threadnext)
next->u.open.threadprev = uv->u.open.threadprev;
}
void luaF_freeupval(lua_State* L, UpVal* uv, lua_Page* page)
{
if (!FFlag::LuauSimplerUpval && uv->v != &uv->u.value) // is it open?
luaF_unlinkupval(uv); // remove from open list
luaM_freegco(L, uv, sizeof(UpVal), uv->memcat, page); // free upvalue
}
@ -154,9 +114,6 @@ void luaF_close(lua_State* L, StkId level)
{
GCObject* o = obj2gco(uv);
LUAU_ASSERT(!isblack(o) && upisopen(uv));
if (FFlag::LuauSimplerUpval)
{
LUAU_ASSERT(!isdead(g, o));
// unlink value *before* closing it since value storage overlaps
@ -164,31 +121,10 @@ void luaF_close(lua_State* L, StkId level)
luaF_closeupval(L, uv, /* dead= */ false);
}
else
{
// by removing the upvalue from global/thread open upvalue lists, L->openupval will be pointing to the next upvalue
luaF_unlinkupval(uv);
if (isdead(g, o))
{
// close the upvalue without copying the dead data so that luaF_freeupval will not unlink again
uv->v = &uv->u.value;
}
else
{
setobj(L, &uv->u.value, uv->v);
uv->v = &uv->u.value;
// GC state of a new closed upvalue has to be initialized
luaC_upvalclosed(L, uv);
}
}
}
}
void luaF_closeupval(lua_State* L, UpVal* uv, bool dead)
{
LUAU_ASSERT(FFlag::LuauSimplerUpval);
// unlink value from all lists *before* closing it since value storage overlaps
LUAU_ASSERT(uv->u.open.next->u.open.prev == uv && uv->u.open.prev->u.open.next == uv);
uv->u.open.next->u.open.prev = uv->u.open.prev;

View File

@ -15,7 +15,6 @@ LUAI_FUNC void luaF_close(lua_State* L, StkId level);
LUAI_FUNC void luaF_closeupval(lua_State* L, UpVal* uv, bool dead);
LUAI_FUNC void luaF_freeproto(lua_State* L, Proto* f, struct lua_Page* page);
LUAI_FUNC void luaF_freeclosure(lua_State* L, Closure* c, struct lua_Page* page);
LUAI_FUNC void luaF_unlinkupval(UpVal* uv);
LUAI_FUNC void luaF_freeupval(lua_State* L, UpVal* uv, struct lua_Page* page);
LUAI_FUNC const LocVar* luaF_getlocal(const Proto* func, int local_number, int pc);
LUAI_FUNC const LocVar* luaF_findlocal(const Proto* func, int local_reg, int pc);

View File

@ -13,6 +13,8 @@
#include <string.h>
LUAU_FASTFLAGVARIABLE(LuauBetterThreadMark, false)
/*
* Luau uses an incremental non-generational non-moving mark&sweep garbage collector.
*
@ -108,21 +110,14 @@
* API calls that can write to thread stacks outside of execution (which implies active) uses a thread barrier that checks if the thread is
* black, and if it is it marks it as gray and puts it on a gray list to be rescanned during atomic phase.
*
* NOTE: The above is only true when LuauNoSleepBit is enabled.
*
* Upvalues are special objects that can be closed, in which case they contain the value (acting as a reference cell) and can be dealt
* with using the regular algorithm, or open, in which case they refer to a stack slot in some other thread. These are difficult to deal
* with because the stack writes are not monitored. Because of this open upvalues are treated in a somewhat special way: they are never marked
* as black (doing so would violate the GC invariant), and they are kept in a special global list (global_State::uvhead) which is traversed
* during atomic phase. This is needed because an open upvalue might point to a stack location in a dead thread that never marked the stack
* slot - upvalues like this are identified since they don't have `markedopen` bit set during thread traversal and closed in `clearupvals`.
*
* NOTE: The above is only true when LuauSimplerUpval is enabled.
*/
LUAU_FASTFLAGVARIABLE(LuauSimplerUpval, false)
LUAU_FASTFLAGVARIABLE(LuauNoSleepBit, false)
LUAU_FASTFLAGVARIABLE(LuauEagerShrink, false)
LUAU_FASTFLAGVARIABLE(LuauFasterSweep, false)
#define GC_SWEEPPAGESTEPCOST 16
@ -408,15 +403,12 @@ static void traversestack(global_State* g, lua_State* l)
stringmark(l->namecall);
for (StkId o = l->stack; o < l->top; o++)
markvalue(g, o);
if (FFlag::LuauSimplerUpval)
{
for (UpVal* uv = l->openupval; uv; uv = uv->u.open.threadnext)
{
LUAU_ASSERT(upisopen(uv));
uv->markedopen = 1;
markobject(g, uv);
}
}
}
static void clearstack(lua_State* l)
@ -426,8 +418,29 @@ static void clearstack(lua_State* l)
setnilvalue(o);
}
// TODO: pull function definition here when FFlag::LuauEagerShrink is removed
static void shrinkstack(lua_State* L);
static void shrinkstack(lua_State* L)
{
// compute used stack - note that we can't use th->top if we're in the middle of vararg call
StkId lim = L->top;
for (CallInfo* ci = L->base_ci; ci <= L->ci; ci++)
{
LUAU_ASSERT(ci->top <= L->stack_last);
if (lim < ci->top)
lim = ci->top;
}
// shrink stack and callinfo arrays if we aren't using most of the space
int ci_used = cast_int(L->ci - L->base_ci); // number of `ci' in use
int s_used = cast_int(lim - L->stack); // part of stack in use
if (L->size_ci > LUAI_MAXCALLS) // handling overflow?
return; // do not touch the stacks
if (3 * ci_used < L->size_ci && 2 * BASIC_CI_SIZE < L->size_ci)
luaD_reallocCI(L, L->size_ci / 2); // still big enough...
condhardstacktests(luaD_reallocCI(L, ci_used + 1));
if (3 * s_used < L->stacksize && 2 * (BASIC_STACK_SIZE + EXTRA_STACK) < L->stacksize)
luaD_reallocstack(L, L->stacksize / 2); // still big enough...
condhardstacktests(luaD_reallocstack(L, s_used));
}
/*
** traverse one gray object, turning it to black.
@ -460,19 +473,37 @@ static size_t propagatemark(global_State* g)
lua_State* th = gco2th(o);
g->gray = th->gclist;
LUAU_ASSERT(!luaC_threadsleeping(th));
bool active = th->isactive || th == th->global->mainthread;
// threads that are executing and the main thread remain gray
bool active = luaC_threadactive(th) || th == th->global->mainthread;
if (FFlag::LuauBetterThreadMark)
{
traversestack(g, th);
// TODO: Refactor this logic after LuauNoSleepBit is removed
// active threads will need to be rescanned later to mark new stack writes so we mark them gray again
if (active)
{
th->gclist = g->grayagain;
g->grayagain = o;
black2gray(o);
}
// the stack needs to be cleared after the last modification of the thread state before sweep begins
// if the thread is inactive, we might not see the thread in this cycle so we must clear it now
if (!active || g->gcstate == GCSatomic)
clearstack(th);
// we could shrink stack at any time but we opt to do it during initial mark to do that just once per cycle
if (g->gcstate == GCSpropagate)
shrinkstack(th);
}
else
{
// TODO: Refactor this logic!
if (!active && g->gcstate == GCSpropagate)
{
traversestack(g, th);
clearstack(th);
if (!FFlag::LuauNoSleepBit)
l_setbit(th->stackstate, THREAD_SLEEPINGBIT);
}
else
{
@ -489,8 +520,9 @@ static size_t propagatemark(global_State* g)
}
// we could shrink stack at any time but we opt to skip it during atomic since it's redundant to do that more than once per cycle
if (FFlag::LuauEagerShrink && g->gcstate != GCSatomic)
if (g->gcstate != GCSatomic)
shrinkstack(th);
}
return sizeof(lua_State) + sizeof(TValue) * th->stacksize + sizeof(CallInfo) * th->size_ci;
}
@ -593,30 +625,6 @@ static size_t cleartable(lua_State* L, GCObject* l)
return work;
}
static void shrinkstack(lua_State* L)
{
// compute used stack - note that we can't use th->top if we're in the middle of vararg call
StkId lim = L->top;
for (CallInfo* ci = L->base_ci; ci <= L->ci; ci++)
{
LUAU_ASSERT(ci->top <= L->stack_last);
if (lim < ci->top)
lim = ci->top;
}
// shrink stack and callinfo arrays if we aren't using most of the space
int ci_used = cast_int(L->ci - L->base_ci); // number of `ci' in use
int s_used = cast_int(lim - L->stack); // part of stack in use
if (L->size_ci > LUAI_MAXCALLS) // handling overflow?
return; // do not touch the stacks
if (3 * ci_used < L->size_ci && 2 * BASIC_CI_SIZE < L->size_ci)
luaD_reallocCI(L, L->size_ci / 2); // still big enough...
condhardstacktests(luaD_reallocCI(L, ci_used + 1));
if (3 * s_used < L->stacksize && 2 * (BASIC_STACK_SIZE + EXTRA_STACK) < L->stacksize)
luaD_reallocstack(L, L->stacksize / 2); // still big enough...
condhardstacktests(luaD_reallocstack(L, s_used));
}
static void freeobj(lua_State* L, GCObject* o, lua_Page* page)
{
switch (o->gch.tt)
@ -669,21 +677,6 @@ static void shrinkbuffersfull(lua_State* L)
static bool deletegco(void* context, lua_Page* page, GCObject* gco)
{
// we are in the process of deleting everything
// threads with open upvalues will attempt to close them all on removal
// but those upvalues might point to stack values that were already deleted
if (!FFlag::LuauSimplerUpval && gco->gch.tt == LUA_TTHREAD)
{
lua_State* th = gco2th(gco);
while (UpVal* uv = th->openupval)
{
luaF_unlinkupval(uv);
// close the upvalue without copying the dead data so that luaF_freeupval will not unlink again
uv->v = &uv->u.value;
}
}
lua_State* L = (lua_State*)context;
freeobj(L, gco, page);
return true;
@ -701,7 +694,6 @@ void luaC_freeall(lua_State* L)
LUAU_ASSERT(g->strt.hash[i] == NULL);
LUAU_ASSERT(L->global->strt.nuse == 0);
LUAU_ASSERT(g->strbufgc == NULL);
}
static void markmt(global_State* g)
@ -829,15 +821,12 @@ static size_t atomic(lua_State* L)
g->gcmetrics.currcycle.atomictimeclear += recordGcDeltaTime(currts);
#endif
if (FFlag::LuauSimplerUpval)
{
// close orphaned live upvalues of dead threads and clear dead upvalues
work += clearupvals(L);
#ifdef LUAI_GCMETRICS
g->gcmetrics.currcycle.atomictimeupval += recordGcDeltaTime(currts);
#endif
}
// flip current white
g->currentwhite = cast_byte(otherwhite(g));
@ -857,20 +846,6 @@ static bool sweepgco(lua_State* L, lua_Page* page, GCObject* gco)
int alive = (gco->gch.marked ^ WHITEBITS) & deadmask;
if (gco->gch.tt == LUA_TTHREAD)
{
lua_State* th = gco2th(gco);
if (alive)
{
if (!FFlag::LuauNoSleepBit)
resetbit(th->stackstate, THREAD_SLEEPINGBIT);
if (!FFlag::LuauEagerShrink)
shrinkstack(th);
}
}
if (alive)
{
LUAU_ASSERT(!isdead(g, gco));
@ -896,8 +871,6 @@ static int sweepgcopage(lua_State* L, lua_Page* page)
if (FFlag::LuauFasterSweep)
{
LUAU_ASSERT(FFlag::LuauNoSleepBit && FFlag::LuauEagerShrink);
global_State* g = L->global;
int deadmask = otherwhite(g);
@ -1183,7 +1156,7 @@ void luaC_fullgc(lua_State* L)
startGcCycleMetrics(g);
#endif
if (FFlag::LuauSimplerUpval ? keepinvariant(g) : g->gcstate <= GCSatomic)
if (keepinvariant(g))
{
// reset sweep marks to sweep all elements (returning them to white)
g->sweepgcopage = g->allgcopages;
@ -1201,15 +1174,12 @@ void luaC_fullgc(lua_State* L)
gcstep(L, SIZE_MAX);
}
if (FFlag::LuauSimplerUpval)
{
// clear markedopen bits for all open upvalues; these might be stuck from half-finished mark prior to full gc
for (UpVal* uv = g->uvhead.u.open.next; uv != &g->uvhead; uv = uv->u.open.next)
{
LUAU_ASSERT(upisopen(uv));
uv->markedopen = 0;
}
}
#ifdef LUAI_GCMETRICS
finishGcCycleMetrics(g);
@ -1245,16 +1215,6 @@ void luaC_fullgc(lua_State* L)
#endif
}
void luaC_barrierupval(lua_State* L, GCObject* v)
{
LUAU_ASSERT(!FFlag::LuauSimplerUpval);
global_State* g = L->global;
LUAU_ASSERT(iswhite(v) && !isdead(g, v));
if (keepinvariant(g))
reallymarkobject(g, v);
}
void luaC_barrierf(lua_State* L, GCObject* o, GCObject* v)
{
global_State* g = L->global;
@ -1346,29 +1306,6 @@ int64_t luaC_allocationrate(lua_State* L)
return int64_t((g->gcstats.atomicstarttotalsizebytes - g->gcstats.endtotalsizebytes) / duration);
}
void luaC_wakethread(lua_State* L)
{
LUAU_ASSERT(!FFlag::LuauNoSleepBit);
if (!luaC_threadsleeping(L))
return;
global_State* g = L->global;
resetbit(L->stackstate, THREAD_SLEEPINGBIT);
if (keepinvariant(g))
{
GCObject* o = obj2gco(L);
LUAU_ASSERT(isblack(o));
L->gclist = g->grayagain;
g->grayagain = o;
black2gray(o);
}
}
const char* luaC_statename(int state)
{
switch (state)

View File

@ -6,8 +6,6 @@
#include "lobject.h"
#include "lstate.h"
LUAU_FASTFLAG(LuauNoSleepBit)
/*
** Default settings for GC tunables (settable via lua_gc)
*/
@ -75,14 +73,6 @@ LUAU_FASTFLAG(LuauNoSleepBit)
#define luaC_white(g) cast_to(uint8_t, ((g)->currentwhite) & WHITEBITS)
// Thread stack states
// TODO: Remove with FFlag::LuauNoSleepBit and replace with lua_State::threadactive
#define THREAD_ACTIVEBIT 0 // thread is currently active
#define THREAD_SLEEPINGBIT 1 // thread is not executing and stack should not be modified
#define luaC_threadactive(L) (testbit((L)->stackstate, THREAD_ACTIVEBIT))
#define luaC_threadsleeping(L) (testbit((L)->stackstate, THREAD_SLEEPINGBIT))
#define luaC_checkGC(L) \
{ \
condhardstacktests(luaD_reallocstack(L, L->stacksize - EXTRA_STACK)); \
@ -121,25 +111,10 @@ LUAU_FASTFLAG(LuauNoSleepBit)
luaC_barrierf(L, obj2gco(p), obj2gco(o)); \
}
// TODO: Remove with FFlag::LuauSimplerUpval
#define luaC_upvalbarrier(L, uv, tv) \
{ \
if (iscollectable(tv) && iswhite(gcvalue(tv)) && (!(uv) || (uv)->v != &(uv)->u.value)) \
luaC_barrierupval(L, gcvalue(tv)); \
}
#define luaC_threadbarrier(L) \
{ \
if (FFlag::LuauNoSleepBit) \
{ \
if (isblack(obj2gco(L))) \
luaC_barrierback(L, obj2gco(L), &L->gclist); \
} \
else \
{ \
if (luaC_threadsleeping(L)) \
luaC_wakethread(L); \
} \
}
#define luaC_init(L, o, tt_) \
@ -154,12 +129,10 @@ LUAI_FUNC size_t luaC_step(lua_State* L, bool assist);
LUAI_FUNC void luaC_fullgc(lua_State* L);
LUAI_FUNC void luaC_initobj(lua_State* L, GCObject* o, uint8_t tt);
LUAI_FUNC void luaC_upvalclosed(lua_State* L, UpVal* uv);
LUAI_FUNC void luaC_barrierupval(lua_State* L, GCObject* v);
LUAI_FUNC void luaC_barrierf(lua_State* L, GCObject* o, GCObject* v);
LUAI_FUNC void luaC_barriertable(lua_State* L, Table* t, GCObject* v);
LUAI_FUNC void luaC_barrierback(lua_State* L, GCObject* o, GCObject** gclist);
LUAI_FUNC void luaC_validate(lua_State* L);
LUAI_FUNC void luaC_dump(lua_State* L, void* file, const char* (*categoryName)(lua_State* L, uint8_t memcat));
LUAI_FUNC int64_t luaC_allocationrate(lua_State* L);
LUAI_FUNC void luaC_wakethread(lua_State* L);
LUAI_FUNC const char* luaC_statename(int state);

View File

@ -332,8 +332,6 @@ typedef struct UpVal
// thread linked list (when open)
struct UpVal* threadnext;
// note: this is the location of a pointer to this upvalue in the previous element that can be either an UpVal or a lua_State
struct UpVal** threadprev; // TODO: remove with FFlag::LuauSimplerUpval
} open;
} u;
} UpVal;

View File

@ -10,8 +10,6 @@
#include "ldo.h"
#include "ldebug.h"
LUAU_FASTFLAG(LuauSimplerUpval)
/*
** Main thread combines a thread state and the global state
*/
@ -79,7 +77,7 @@ static void preinit_state(lua_State* L, global_State* g)
L->namecall = NULL;
L->cachedslot = 0;
L->singlestep = false;
L->stackstate = 0;
L->isactive = false;
L->activememcat = 0;
L->userdata = NULL;
}
@ -89,7 +87,6 @@ static void close_state(lua_State* L)
global_State* g = L->global;
luaF_close(L, L->stack); // close all upvalues for this thread
luaC_freeall(L); // collect all objects
LUAU_ASSERT(g->strbufgc == NULL);
LUAU_ASSERT(g->strt.nuse == 0);
luaM_freearray(L, L->global->strt.hash, L->global->strt.size, TString*, 0);
freestack(L, L);
@ -121,11 +118,6 @@ lua_State* luaE_newthread(lua_State* L)
void luaE_freethread(lua_State* L, lua_State* L1, lua_Page* page)
{
if (!FFlag::LuauSimplerUpval)
{
luaF_close(L1, L1->stack); // close all upvalues for this thread
LUAU_ASSERT(L1->openupval == NULL);
}
global_State* g = L->global;
if (g->cb.userthread)
g->cb.userthread(NULL, L1);
@ -199,7 +191,6 @@ lua_State* lua_newstate(lua_Alloc f, void* ud)
g->gray = NULL;
g->grayagain = NULL;
g->weak = NULL;
g->strbufgc = NULL;
g->totalbytes = sizeof(LG);
g->gcgoal = LUAI_GCGOAL;
g->gcstepmul = LUAI_GCSTEPMUL;

View File

@ -167,8 +167,6 @@ typedef struct global_State
GCObject* grayagain; // list of objects to be traversed atomically
GCObject* weak; // list of weak tables (to be cleared)
TString* strbufgc; // list of all string buffer objects; TODO: remove with LuauNoStrbufLink
size_t GCthreshold; // when totalbytes > GCthreshold, run GC step
size_t totalbytes; // number of bytes currently allocated
@ -222,8 +220,8 @@ struct lua_State
uint8_t status;
uint8_t activememcat; // memory category that is used for new GC object allocations
uint8_t stackstate;
bool isactive; // thread is currently executing, stack may be mutated without barriers
bool singlestep; // call debugstep hook after each instruction

View File

@ -7,8 +7,6 @@
#include <string.h>
LUAU_FASTFLAGVARIABLE(LuauNoStrbufLink, false)
unsigned int luaS_hash(const char* str, size_t len)
{
// Note that this hashing algorithm is replicated in BytecodeBuilder.cpp, BytecodeBuilder::getStringHash
@ -96,51 +94,18 @@ static TString* newlstr(lua_State* L, const char* str, size_t l, unsigned int h)
return ts;
}
static void unlinkstrbuf(lua_State* L, TString* ts)
{
LUAU_ASSERT(!FFlag::LuauNoStrbufLink);
global_State* g = L->global;
TString** p = &g->strbufgc;
while (TString* curr = *p)
{
if (curr == ts)
{
*p = curr->next;
return;
}
else
{
p = &curr->next;
}
}
LUAU_ASSERT(!"failed to find string buffer");
}
TString* luaS_bufstart(lua_State* L, size_t size)
{
if (size > MAXSSIZE)
luaM_toobig(L);
global_State* g = L->global;
TString* ts = luaM_newgco(L, TString, sizestring(size), L->activememcat);
luaC_init(L, ts, LUA_TSTRING);
ts->atom = ATOM_UNDEF;
ts->hash = 0; // computed in luaS_buffinish
ts->len = unsigned(size);
if (FFlag::LuauNoStrbufLink)
{
ts->next = NULL;
}
else
{
ts->next = g->strbufgc;
g->strbufgc = ts;
}
return ts;
}
@ -164,10 +129,7 @@ TString* luaS_buffinish(lua_State* L, TString* ts)
}
}
if (FFlag::LuauNoStrbufLink)
LUAU_ASSERT(ts->next == NULL);
else
unlinkstrbuf(L, ts);
ts->hash = h;
ts->data[ts->len] = '\0'; // ending 0
@ -222,21 +184,10 @@ static bool unlinkstr(lua_State* L, TString* ts)
void luaS_free(lua_State* L, TString* ts, lua_Page* page)
{
if (FFlag::LuauNoStrbufLink)
{
if (unlinkstr(L, ts))
L->global->strt.nuse--;
else
LUAU_ASSERT(ts->next == NULL); // orphaned string buffer
}
else
{
// Unchain from the string table
if (!unlinkstr(L, ts))
unlinkstrbuf(L, ts); // An unlikely scenario when we have a string buffer on our hands
else
L->global->strt.nuse--;
}
luaM_freegco(L, ts, sizestring(ts->len), ts->memcat, page);
}

View File

@ -16,9 +16,6 @@
#include <string.h>
LUAU_FASTFLAG(LuauSimplerUpval)
LUAU_FASTFLAG(LuauNoSleepBit)
// Disable c99-designator to avoid the warning in CGOTO dispatch table
#ifdef __clang__
#if __has_warning("-Wc99-designator")
@ -69,11 +66,6 @@ LUAU_FASTFLAG(LuauNoSleepBit)
#define VM_PATCH_C(pc, slot) *const_cast<Instruction*>(pc) = ((uint8_t(slot) << 24) | (0x00ffffffu & *(pc)))
#define VM_PATCH_E(pc, slot) *const_cast<Instruction*>(pc) = ((uint32_t(slot) << 8) | (0x000000ffu & *(pc)))
// NOTE: If debugging the Luau code, disable this macro to prevent timeouts from
// occurring when tracing code in Visual Studio / XCode
#if 0
#define VM_INTERRUPT()
#else
#define VM_INTERRUPT() \
{ \
void (*interrupt)(lua_State*, int) = L->global->cb.interrupt; \
@ -87,7 +79,6 @@ LUAU_FASTFLAG(LuauNoSleepBit)
} \
} \
}
#endif
#define VM_DISPATCH_OP(op) &&CASE_##op
@ -150,32 +141,6 @@ LUAU_NOINLINE static void luau_prepareFORN(lua_State* L, StkId plimit, StkId pst
luaG_forerror(L, pstep, "step");
}
LUAU_NOINLINE static bool luau_loopFORG(lua_State* L, int a, int c)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
StkId ra = &L->base[a];
LUAU_ASSERT(ra + 3 <= L->top);
setobjs2s(L, ra + 3 + 2, ra + 2);
setobjs2s(L, ra + 3 + 1, ra + 1);
setobjs2s(L, ra + 3, ra);
L->top = ra + 3 + 3; // func. + 2 args (state and index)
LUAU_ASSERT(L->top <= L->stack_last);
luaD_call(L, ra + 3, c);
L->top = L->ci->top;
// recompute ra since stack might have been reallocated
ra = &L->base[a];
LUAU_ASSERT(ra < L->top);
// copy first variable back into the iteration index
setobjs2s(L, ra + 2, ra + 3);
return ttisnil(ra + 2);
}
// calls a C function f with no yielding support; optionally save one resulting value to the res register
// the function and arguments have to already be pushed to L->top
LUAU_NOINLINE static void luau_callTM(lua_State* L, int nparams, int res)
@ -316,9 +281,8 @@ static void luau_execute(lua_State* L)
const Instruction* pc;
LUAU_ASSERT(isLua(L->ci));
LUAU_ASSERT(luaC_threadactive(L));
LUAU_ASSERT(!luaC_threadsleeping(L));
LUAU_ASSERT(!FFlag::LuauNoSleepBit || !isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
LUAU_ASSERT(L->isactive);
LUAU_ASSERT(!isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
pc = L->ci->savedpc;
cl = clvalue(L->ci->func);
@ -498,8 +462,6 @@ static void luau_execute(lua_State* L)
setobj(L, uv->v, ra);
luaC_barrier(L, uv, ra);
if (!FFlag::LuauSimplerUpval)
luaC_upvalbarrier(L, uv, uv->v);
VM_NEXT();
}
@ -2403,52 +2365,8 @@ static void luau_execute(lua_State* L)
VM_CASE(LOP_DEP_FORGLOOP_INEXT)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: ipairs/inext
if (ttisnil(ra) && ttistable(ra + 1) && ttislightuserdata(ra + 2))
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
// if 1-based index of the last iteration is in bounds, this means 0-based index of the current iteration is in bounds
if (unsigned(index) < unsigned(h->sizearray))
{
// note that nil elements inside the array terminate the traversal
if (!ttisnil(&h->array[index]))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
setnvalue(ra + 3, double(index + 1));
setobj2s(L, ra + 4, &h->array[index]);
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// fallthrough to exit
VM_NEXT();
}
}
else
{
// fallthrough to exit
VM_NEXT();
}
}
else
{
// slow-path; can call Lua/C generators
bool stop;
VM_PROTECT(stop = luau_loopFORG(L, LUAU_INSN_A(insn), 2));
pc += stop ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
LUAU_ASSERT(!"Unsupported deprecated opcode");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_FORGPREP_NEXT)
@ -2475,68 +2393,8 @@ static void luau_execute(lua_State* L)
VM_CASE(LOP_DEP_FORGLOOP_NEXT)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: pairs/next
if (ttisnil(ra) && ttistable(ra + 1) && ttislightuserdata(ra + 2))
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
int sizearray = h->sizearray;
int sizenode = 1 << h->lsizenode;
// first we advance index through the array portion
while (unsigned(index) < unsigned(sizearray))
{
if (!ttisnil(&h->array[index]))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
setnvalue(ra + 3, double(index + 1));
setobj2s(L, ra + 4, &h->array[index]);
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// then we advance index through the hash portion
while (unsigned(index - sizearray) < unsigned(sizenode))
{
LuaNode* n = &h->node[index - sizearray];
if (!ttisnil(gval(n)))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
getnodekey(L, ra + 3, n);
setobj2s(L, ra + 4, gval(n));
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// fallthrough to exit
VM_NEXT();
}
else
{
// slow-path; can call Lua/C generators
bool stop;
VM_PROTECT(stop = luau_loopFORG(L, LUAU_INSN_A(insn), 2));
pc += stop ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
LUAU_ASSERT(!"Unsupported deprecated opcode");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_GETVARARGS)
@ -2750,92 +2608,14 @@ static void luau_execute(lua_State* L)
VM_CASE(LOP_DEP_JUMPIFEQK)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* rb = VM_KV(aux);
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) == bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) == nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
pc += gcvalue(ra) == gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
default:;
}
LUAU_ASSERT(!"Constant is expected to be of primitive type");
}
else
{
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
LUAU_ASSERT(!"Unsupported deprecated opcode");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_DEP_JUMPIFNOTEQK)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* rb = VM_KV(aux);
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) != bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) != nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
pc += gcvalue(ra) != gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
default:;
}
LUAU_ASSERT(!"Constant is expected to be of primitive type");
}
else
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
LUAU_ASSERT(!"Unsupported deprecated opcode");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_FASTCALL1)

View File

@ -1,9 +1,10 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Fixture.h"
#include "Luau/AstQuery.h"
#include "AstQueryDsl.h"
#include "doctest.h"
#include "Fixture.h"
using namespace Luau;

45
tests/AstQueryDsl.cpp Normal file
View File

@ -0,0 +1,45 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "AstQueryDsl.h"
namespace Luau
{
FindNthOccurenceOf::FindNthOccurenceOf(Nth nth)
: requestedNth(nth)
{
}
bool FindNthOccurenceOf::checkIt(AstNode* n)
{
if (theNode)
return false;
if (n->classIndex == requestedNth.classIndex)
{
// Human factor: the requestedNth starts from 1 because of the term `nth`.
if (currentOccurrence + 1 != requestedNth.nth)
++currentOccurrence;
else
theNode = n;
}
return !theNode; // once found, returns false and stops traversal
}
bool FindNthOccurenceOf::visit(AstNode* n)
{
return checkIt(n);
}
bool FindNthOccurenceOf::visit(AstType* t)
{
return checkIt(t);
}
bool FindNthOccurenceOf::visit(AstTypePack* t)
{
return checkIt(t);
}
}

83
tests/AstQueryDsl.h Normal file
View File

@ -0,0 +1,83 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Ast.h"
#include "Luau/Common.h"
#include <vector>
#include <type_traits>
namespace Luau
{
struct Nth
{
int classIndex;
int nth;
};
template<typename T>
Nth nth(int nth = 1)
{
static_assert(std::is_base_of_v<AstNode, T>, "T must be a derived class of AstNode");
LUAU_ASSERT(nth > 0); // Did you mean to use `nth<T>(1)`?
return Nth{T::ClassIndex(), nth};
}
struct FindNthOccurenceOf : public AstVisitor
{
Nth requestedNth;
int currentOccurrence = 0;
AstNode* theNode = nullptr;
FindNthOccurenceOf(Nth nth);
bool checkIt(AstNode* n);
bool visit(AstNode* n) override;
bool visit(AstType* n) override;
bool visit(AstTypePack* n) override;
};
/** DSL querying of the AST.
*
* Given an AST, one can query for a particular node directly without having to manually unwrap the tree, for example:
*
* ```
* if a and b then
* print(a + b)
* end
*
* function f(x, y)
* return x + y
* end
* ```
*
* There are numerous ways to access the second AstExprBinary.
* 1. Luau::query<AstExprBinary>(block, {nth<AstStatFunction>(), nth<AstExprBinary>()})
* 2. Luau::query<AstExprBinary>(Luau::query<AstStatFunction>(block))
* 3. Luau::query<AstExprBinary>(block, {nth<AstExprBinary>(2)})
*/
template<typename T, int N = 1>
T* query(AstNode* node, const std::vector<Nth>& nths = {nth<T>(N)})
{
static_assert(std::is_base_of_v<AstNode, T>, "T must be a derived class of AstNode");
// If a nested query call fails to find the node in question, subsequent calls can propagate rather than trying to do more.
// This supports `query(query(...))`
for (Nth nth : nths)
{
if (!node)
return nullptr;
FindNthOccurenceOf finder{nth};
node->visit(&finder);
node = finder.theNode;
}
return node ? node->as<T>() : nullptr;
}
}

View File

@ -1,9 +1,16 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/AssemblyBuilderX64.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeBlockUnwind.h"
#include "Luau/UnwindBuilder.h"
#include "Luau/UnwindBuilderDwarf2.h"
#include "Luau/UnwindBuilderWin.h"
#include "doctest.h"
#include <memory>
#include <stdexcept>
#include <string.h>
using namespace Luau::CodeGen;
@ -41,8 +48,8 @@ TEST_CASE("CodeAllocation")
TEST_CASE("CodeAllocationFailure")
{
size_t blockSize = 16384;
size_t maxTotalSize = 32768;
size_t blockSize = 3000;
size_t maxTotalSize = 7000;
CodeAllocator allocator(blockSize, maxTotalSize);
uint8_t* nativeData;
@ -50,13 +57,13 @@ TEST_CASE("CodeAllocationFailure")
uint8_t* nativeEntry;
std::vector<uint8_t> code;
code.resize(18000);
code.resize(4000);
// allocation has to fit in a block
REQUIRE(!allocator.allocate(nullptr, 0, code.data(), code.size(), nativeData, sizeNativeData, nativeEntry));
// each allocation exhausts a block, so third allocation fails
code.resize(10000);
code.resize(2000);
REQUIRE(allocator.allocate(nullptr, 0, code.data(), code.size(), nativeData, sizeNativeData, nativeEntry));
REQUIRE(allocator.allocate(nullptr, 0, code.data(), code.size(), nativeData, sizeNativeData, nativeEntry));
REQUIRE(!allocator.allocate(nullptr, 0, code.data(), code.size(), nativeData, sizeNativeData, nativeEntry));
@ -120,19 +127,84 @@ TEST_CASE("CodeAllocationWithUnwindCallbacks")
CHECK(info.destroyCalled);
}
#if defined(__x86_64__) || defined(_M_X64)
TEST_CASE("GeneratedCodeExecution")
TEST_CASE("WindowsUnwindCodesX64")
{
UnwindBuilderWin unwind;
unwind.start();
unwind.spill(16, rdx);
unwind.spill(8, rcx);
unwind.save(rdi);
unwind.save(rsi);
unwind.save(rbx);
unwind.save(rbp);
unwind.save(r12);
unwind.save(r13);
unwind.save(r14);
unwind.save(r15);
unwind.allocStack(72);
unwind.setupFrameReg(rbp, 48);
unwind.finish();
std::vector<char> data;
data.resize(unwind.getSize());
unwind.finalize(data.data(), nullptr, 0);
std::vector<uint8_t> expected{0x01, 0x23, 0x0a, 0x35, 0x23, 0x33, 0x1e, 0x82, 0x1a, 0xf0, 0x18, 0xe0, 0x16, 0xd0, 0x14, 0xc0, 0x12, 0x50, 0x10,
0x30, 0x0e, 0x60, 0x0c, 0x70};
REQUIRE(data.size() == expected.size());
CHECK(memcmp(data.data(), expected.data(), expected.size()) == 0);
}
TEST_CASE("Dwarf2UnwindCodesX64")
{
UnwindBuilderDwarf2 unwind;
unwind.start();
unwind.save(rdi);
unwind.save(rsi);
unwind.save(rbx);
unwind.save(rbp);
unwind.save(r12);
unwind.save(r13);
unwind.save(r14);
unwind.save(r15);
unwind.allocStack(72);
unwind.setupFrameReg(rbp, 48);
unwind.finish();
std::vector<char> data;
data.resize(unwind.getSize());
unwind.finalize(data.data(), nullptr, 0);
std::vector<uint8_t> expected{0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x78, 0x10, 0x0c, 0x07, 0x08, 0x05, 0x10, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x4c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x0e, 0x10, 0x85, 0x02, 0x02, 0x02, 0x0e, 0x18, 0x84, 0x03, 0x02, 0x02, 0x0e, 0x20, 0x83,
0x04, 0x02, 0x02, 0x0e, 0x28, 0x86, 0x05, 0x02, 0x02, 0x0e, 0x30, 0x8c, 0x06, 0x02, 0x02, 0x0e, 0x38, 0x8d, 0x07, 0x02, 0x02, 0x0e, 0x40,
0x8e, 0x08, 0x02, 0x02, 0x0e, 0x48, 0x8f, 0x09, 0x02, 0x04, 0x0e, 0x90, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
REQUIRE(data.size() == expected.size());
CHECK(memcmp(data.data(), expected.data(), expected.size()) == 0);
}
#if defined(__x86_64__) || defined(_M_X64)
#if defined(_WIN32)
// Windows x64 ABI
constexpr RegisterX64 rArg1 = rcx;
constexpr RegisterX64 rArg2 = rdx;
// Windows x64 ABI
constexpr RegisterX64 rArg1 = rcx;
constexpr RegisterX64 rArg2 = rdx;
#else
// System V AMD64 ABI
constexpr RegisterX64 rArg1 = rdi;
constexpr RegisterX64 rArg2 = rsi;
// System V AMD64 ABI
constexpr RegisterX64 rArg1 = rdi;
constexpr RegisterX64 rArg2 = rsi;
#endif
constexpr RegisterX64 rNonVol1 = r12;
constexpr RegisterX64 rNonVol2 = rbx;
TEST_CASE("GeneratedCodeExecution")
{
AssemblyBuilderX64 build(/* logText= */ false);
build.mov(rax, rArg1);
@ -157,6 +229,90 @@ TEST_CASE("GeneratedCodeExecution")
int64_t result = f(10, 20);
CHECK(result == 210);
}
void throwing(int64_t arg)
{
CHECK(arg == 25);
throw std::runtime_error("testing");
}
TEST_CASE("GeneratedCodeExecutionWithThrow")
{
AssemblyBuilderX64 build(/* logText= */ false);
#if defined(_WIN32)
std::unique_ptr<UnwindBuilder> unwind = std::make_unique<UnwindBuilderWin>();
#else
std::unique_ptr<UnwindBuilder> unwind = std::make_unique<UnwindBuilderDwarf2>();
#endif
unwind->start();
// Prologue
build.push(rNonVol1);
unwind->save(rNonVol1);
build.push(rNonVol2);
unwind->save(rNonVol2);
build.push(rbp);
unwind->save(rbp);
int stackSize = 32;
int localsSize = 16;
build.sub(rsp, stackSize + localsSize);
unwind->allocStack(stackSize + localsSize);
build.lea(rbp, qword[rsp + stackSize]);
unwind->setupFrameReg(rbp, stackSize);
unwind->finish();
// Body
build.mov(rNonVol1, rArg1);
build.mov(rNonVol2, rArg2);
build.add(rNonVol1, 15);
build.mov(rArg1, rNonVol1);
build.call(rNonVol2);
// Epilogue
build.lea(rsp, qword[rbp + localsSize]);
build.pop(rbp);
build.pop(rNonVol2);
build.pop(rNonVol1);
build.ret();
build.finalize();
size_t blockSize = 1024 * 1024;
size_t maxTotalSize = 1024 * 1024;
CodeAllocator allocator(blockSize, maxTotalSize);
allocator.context = unwind.get();
allocator.createBlockUnwindInfo = createBlockUnwindInfo;
allocator.destroyBlockUnwindInfo = destroyBlockUnwindInfo;
uint8_t* nativeData;
size_t sizeNativeData;
uint8_t* nativeEntry;
REQUIRE(allocator.allocate(build.data.data(), build.data.size(), build.code.data(), build.code.size(), nativeData, sizeNativeData, nativeEntry));
REQUIRE(nativeEntry);
using FunctionType = int64_t(int64_t, void (*)(int64_t));
FunctionType* f = (FunctionType*)nativeEntry;
// To simplify debugging, CHECK_THROWS_WITH_AS is not used here
try
{
f(10, throwing);
}
catch (const std::runtime_error& error)
{
CHECK(strcmp(error.what(), "testing") == 0);
}
}
#endif
TEST_SUITE_END();

View File

@ -1,8 +1,11 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Fixture.h"
#include "Luau/ConstraintGraphBuilder.h"
#include "Luau/NotNull.h"
#include "Luau/ToString.h"
#include "ConstraintGraphBuilderFixture.h"
#include "Fixture.h"
#include "doctest.h"
using namespace Luau;

View File

@ -0,0 +1,17 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "ConstraintGraphBuilderFixture.h"
namespace Luau
{
ConstraintGraphBuilderFixture::ConstraintGraphBuilderFixture()
: Fixture()
, mainModule(new Module)
, cgb("MainModule", mainModule, &arena, NotNull(&moduleResolver), singletonTypes, NotNull(&ice), frontend.getGlobalScope(), &logger)
, forceTheFlag{"DebugLuauDeferredConstraintResolution", true}
{
BlockedTypeVar::nextIndex = 0;
BlockedTypePack::nextIndex = 0;
}
}

View File

@ -0,0 +1,27 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/ConstraintGraphBuilder.h"
#include "Luau/DcrLogger.h"
#include "Luau/TypeArena.h"
#include "Luau/Module.h"
#include "Fixture.h"
#include "ScopedFlags.h"
namespace Luau
{
struct ConstraintGraphBuilderFixture : Fixture
{
TypeArena arena;
ModulePtr mainModule;
ConstraintGraphBuilder cgb;
DcrLogger logger;
ScopedFastFlag forceTheFlag;
ConstraintGraphBuilderFixture();
};
}

View File

@ -1,12 +1,12 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Fixture.h"
#include "doctest.h"
#include "Luau/ConstraintGraphBuilder.h"
#include "Luau/ConstraintSolver.h"
#include "ConstraintGraphBuilderFixture.h"
#include "Fixture.h"
#include "doctest.h"
using namespace Luau;
static TypeId requireBinding(NotNull<Scope> scope, const char* name)

View File

@ -444,16 +444,6 @@ BuiltinsFixture::BuiltinsFixture(bool freeze, bool prepareAutocomplete)
Luau::freeze(frontend.typeCheckerForAutocomplete.globalTypes);
}
ConstraintGraphBuilderFixture::ConstraintGraphBuilderFixture()
: Fixture()
, mainModule(new Module)
, cgb(mainModuleName, mainModule, &arena, NotNull(&moduleResolver), singletonTypes, NotNull(&ice), frontend.getGlobalScope(), &logger)
, forceTheFlag{"DebugLuauDeferredConstraintResolution", true}
{
BlockedTypeVar::nextIndex = 0;
BlockedTypePack::nextIndex = 0;
}
ModuleName fromString(std::string_view name)
{
return ModuleName(name);
@ -516,41 +506,4 @@ void dump(const std::vector<Constraint>& constraints)
printf("%s\n", toString(c, opts).c_str());
}
FindNthOccurenceOf::FindNthOccurenceOf(Nth nth)
: requestedNth(nth)
{
}
bool FindNthOccurenceOf::checkIt(AstNode* n)
{
if (theNode)
return false;
if (n->classIndex == requestedNth.classIndex)
{
// Human factor: the requestedNth starts from 1 because of the term `nth`.
if (currentOccurrence + 1 != requestedNth.nth)
++currentOccurrence;
else
theNode = n;
}
return !theNode; // once found, returns false and stops traversal
}
bool FindNthOccurenceOf::visit(AstNode* n)
{
return checkIt(n);
}
bool FindNthOccurenceOf::visit(AstType* t)
{
return checkIt(t);
}
bool FindNthOccurenceOf::visit(AstTypePack* t)
{
return checkIt(t);
}
} // namespace Luau

View File

@ -12,7 +12,6 @@
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypeVar.h"
#include "Luau/DcrLogger.h"
#include "IostreamOptional.h"
#include "ScopedFlags.h"
@ -162,18 +161,6 @@ struct BuiltinsFixture : Fixture
BuiltinsFixture(bool freeze = true, bool prepareAutocomplete = false);
};
struct ConstraintGraphBuilderFixture : Fixture
{
TypeArena arena;
ModulePtr mainModule;
ConstraintGraphBuilder cgb;
DcrLogger logger;
ScopedFastFlag forceTheFlag;
ConstraintGraphBuilderFixture();
};
ModuleName fromString(std::string_view name);
template<typename T>
@ -199,76 +186,6 @@ std::optional<TypeId> lookupName(ScopePtr scope, const std::string& name); // Wa
std::optional<TypeId> linearSearchForBinding(Scope* scope, const char* name);
struct Nth
{
int classIndex;
int nth;
};
template<typename T>
Nth nth(int nth = 1)
{
static_assert(std::is_base_of_v<AstNode, T>, "T must be a derived class of AstNode");
LUAU_ASSERT(nth > 0); // Did you mean to use `nth<T>(1)`?
return Nth{T::ClassIndex(), nth};
}
struct FindNthOccurenceOf : public AstVisitor
{
Nth requestedNth;
int currentOccurrence = 0;
AstNode* theNode = nullptr;
FindNthOccurenceOf(Nth nth);
bool checkIt(AstNode* n);
bool visit(AstNode* n) override;
bool visit(AstType* n) override;
bool visit(AstTypePack* n) override;
};
/** DSL querying of the AST.
*
* Given an AST, one can query for a particular node directly without having to manually unwrap the tree, for example:
*
* ```
* if a and b then
* print(a + b)
* end
*
* function f(x, y)
* return x + y
* end
* ```
*
* There are numerous ways to access the second AstExprBinary.
* 1. Luau::query<AstExprBinary>(block, {nth<AstStatFunction>(), nth<AstExprBinary>()})
* 2. Luau::query<AstExprBinary>(Luau::query<AstStatFunction>(block))
* 3. Luau::query<AstExprBinary>(block, {nth<AstExprBinary>(2)})
*/
template<typename T, int N = 1>
T* query(AstNode* node, const std::vector<Nth>& nths = {nth<T>(N)})
{
static_assert(std::is_base_of_v<AstNode, T>, "T must be a derived class of AstNode");
// If a nested query call fails to find the node in question, subsequent calls can propagate rather than trying to do more.
// This supports `query(query(...))`
for (Nth nth : nths)
{
if (!node)
return nullptr;
FindNthOccurenceOf finder{nth};
node->visit(&finder);
node = finder.theNode;
}
return node ? node->as<T>() : nullptr;
}
} // namespace Luau
#define LUAU_REQUIRE_ERRORS(result) \

View File

@ -459,7 +459,7 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "thread_is_a_type")
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*typeChecker.threadType, *requireType("co"));
CHECK("thread" == toString(requireType("co")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "coroutine_resume_anything_goes")
@ -627,6 +627,8 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "select_with_decimal_argument_is_rounded_down
// Could be flaky if the fix has regressed.
TEST_CASE_FIXTURE(BuiltinsFixture, "bad_select_should_not_crash")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
do end
local _ = function(l0,...)
@ -638,8 +640,8 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "bad_select_should_not_crash")
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ("Argument count mismatch. Function expects at least 1 argument, but none are specified", toString(result.errors[0]));
CHECK_EQ("Argument count mismatch. Function expects 1 argument, but none are specified", toString(result.errors[1]));
CHECK_EQ("Argument count mismatch. Function '_' expects at least 1 argument, but none are specified", toString(result.errors[0]));
CHECK_EQ("Argument count mismatch. Function 'select' expects 1 argument, but none are specified", toString(result.errors[1]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "select_way_out_of_range")
@ -824,12 +826,12 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "string_lib_self_noself")
TEST_CASE_FIXTURE(BuiltinsFixture, "gmatch_definition")
{
CheckResult result = check(R"_(
local a, b, c = ("hey"):gmatch("(.)(.)(.)")()
local a, b, c = ("hey"):gmatch("(.)(.)(.)")()
for c in ("hey"):gmatch("(.)") do
for c in ("hey"):gmatch("(.)") do
print(c:upper())
end
)_");
end
)_");
LUAU_REQUIRE_NO_ERRORS(result);
}
@ -1008,6 +1010,8 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "table_freeze_is_generic")
TEST_CASE_FIXTURE(BuiltinsFixture, "set_metatable_needs_arguments")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
ScopedFastFlag sff{"LuauSetMetaTableArgsCheck", true};
CheckResult result = check(R"(
local a = {b=setmetatable}
@ -1016,8 +1020,8 @@ a:b()
a:b({})
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ(toString(result.errors[0]), "Argument count mismatch. Function expects 2 arguments, but none are specified");
CHECK_EQ(toString(result.errors[1]), "Argument count mismatch. Function expects 2 arguments, but only 1 is specified");
CHECK_EQ(toString(result.errors[0]), "Argument count mismatch. Function 'a.b' expects 2 arguments, but none are specified");
CHECK_EQ(toString(result.errors[1]), "Argument count mismatch. Function 'a.b' expects 2 arguments, but only 1 is specified");
}
TEST_CASE_FIXTURE(Fixture, "typeof_unresolved_function")

View File

@ -1732,4 +1732,56 @@ TEST_CASE_FIXTURE(Fixture, "dont_mutate_the_underlying_head_of_typepack_when_cal
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "improved_function_arg_mismatch_errors")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
local function foo1(a: number) end
foo1()
local function foo2(a: number, b: string?) end
foo2()
local function foo3(a: number, b: string?, c: any) end -- any is optional
foo3()
string.find()
local t = {}
function t.foo(x: number, y: string?, ...: any) end
function t:bar(x: number, y: string?) end
t.foo()
t:bar()
local u = { a = t }
u.a.foo()
)");
LUAU_REQUIRE_ERROR_COUNT(7, result);
CHECK_EQ(toString(result.errors[0]), "Argument count mismatch. Function 'foo1' expects 1 argument, but none are specified");
CHECK_EQ(toString(result.errors[1]), "Argument count mismatch. Function 'foo2' expects 1 to 2 arguments, but none are specified");
CHECK_EQ(toString(result.errors[2]), "Argument count mismatch. Function 'foo3' expects 1 to 3 arguments, but none are specified");
CHECK_EQ(toString(result.errors[3]), "Argument count mismatch. Function 'string.find' expects 2 to 4 arguments, but none are specified");
CHECK_EQ(toString(result.errors[4]), "Argument count mismatch. Function 't.foo' expects at least 1 argument, but none are specified");
CHECK_EQ(toString(result.errors[5]), "Argument count mismatch. Function 't.bar' expects 2 to 3 arguments, but only 1 is specified");
CHECK_EQ(toString(result.errors[6]), "Argument count mismatch. Function 'u.a.foo' expects at least 1 argument, but none are specified");
}
// This might be surprising, but since 'any' became optional, unannotated functions in non-strict 'expect' 0 arguments
TEST_CASE_FIXTURE(BuiltinsFixture, "improved_function_arg_mismatch_error_nonstrict")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
--!nonstrict
local function foo(a, b) end
foo(string.find("hello", "e"))
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Argument count mismatch. Function 'foo' expects 0 to 2 arguments, but 3 are specified");
}
TEST_SUITE_END();

View File

@ -782,6 +782,8 @@ local TheDispatcher: Dispatcher = {
TEST_CASE_FIXTURE(Fixture, "generic_argument_count_too_few")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
function test(a: number)
return 1
@ -794,11 +796,13 @@ wrapper(test)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), R"(Argument count mismatch. Function expects 2 arguments, but only 1 is specified)");
CHECK_EQ(toString(result.errors[0]), R"(Argument count mismatch. Function 'wrapper' expects 2 arguments, but only 1 is specified)");
}
TEST_CASE_FIXTURE(Fixture, "generic_argument_count_too_many")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
function test2(a: number, b: string)
return 1
@ -811,7 +815,7 @@ wrapper(test2, 1, "", 3)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), R"(Argument count mismatch. Function expects 3 arguments, but 4 are specified)");
CHECK_EQ(toString(result.errors[0]), R"(Argument count mismatch. Function 'wrapper' expects 3 arguments, but 4 are specified)");
}
TEST_CASE_FIXTURE(Fixture, "generic_function")

View File

@ -69,6 +69,8 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "xpcall_returns_what_f_returns")
CHECK("string" == toString(requireType("c")));
CHECK(expected == decorateWithTypes(code));
LUAU_REQUIRE_NO_ERRORS(result);
}
// We had a bug where if you have two type packs that looks like:

View File

@ -202,6 +202,15 @@ TEST_CASE_FIXTURE(Fixture, "tagged_unions_immutable_tag")
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "table_has_a_boolean")
{
CheckResult result = check(R"(
local t={a=1,b=false}
)");
CHECK("{ a: number, b: boolean }" == toString(requireType("t"), {true}));
}
TEST_CASE_FIXTURE(Fixture, "table_properties_singleton_strings")
{
CheckResult result = check(R"(

View File

@ -2615,9 +2615,11 @@ do end
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_crash_when_setmetatable_does_not_produce_a_metatabletypevar")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check("local x = setmetatable({})");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Argument count mismatch. Function expects 2 arguments, but only 1 is specified", toString(result.errors[0]));
CHECK_EQ("Argument count mismatch. Function 'setmetatable' expects 2 arguments, but only 1 is specified", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "instantiate_table_cloning")
@ -2695,6 +2697,8 @@ local baz = foo[bar]
TEST_CASE_FIXTURE(BuiltinsFixture, "table_simple_call")
{
ScopedFastFlag luauFunctionArgMismatchDetails{"LuauFunctionArgMismatchDetails", true};
CheckResult result = check(R"(
local a = setmetatable({ x = 2 }, {
__call = function(self)
@ -2706,7 +2710,7 @@ local c = a(2) -- too many arguments
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Argument count mismatch. Function expects 1 argument, but 2 are specified", toString(result.errors[0]));
CHECK_EQ("Argument count mismatch. Function 'a' expects 1 argument, but 2 are specified", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "access_index_metamethod_that_returns_variadic")

View File

@ -1105,4 +1105,21 @@ end
CHECK_EQ(*getMainModule()->astResolvedTypes.find(annotation), *ty);
}
TEST_CASE_FIXTURE(Fixture, "bidirectional_checking_of_higher_order_function")
{
CheckResult result = check(R"(
function higher(cb: (number) -> ()) end
higher(function(n) -- no error here. n : number
local e: string = n -- error here. n /: string
end)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
Location location = result.errors[0].location;
CHECK(location.begin.line == 4);
CHECK(location.end.line == 4);
}
TEST_SUITE_END();

View File

@ -964,4 +964,40 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "detect_cyclic_typepacks2")
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "unify_variadic_tails_in_arguments")
{
ScopedFastFlag luauCallUnifyPackTails{"LuauCallUnifyPackTails", true};
CheckResult result = check(R"(
function foo(...: string): number
return 1
end
function bar(...: number): number
return foo(...)
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Type 'number' could not be converted into 'string'");
}
TEST_CASE_FIXTURE(Fixture, "unify_variadic_tails_in_arguments_free")
{
ScopedFastFlag luauCallUnifyPackTails{"LuauCallUnifyPackTails", true};
CheckResult result = check(R"(
function foo<T...>(...: T...): T...
return ...
end
function bar(...: number): boolean
return foo(...)
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Type 'number' could not be converted into 'boolean'");
}
TEST_SUITE_END();

View File

@ -383,8 +383,6 @@ TableTests.casting_sealed_tables_with_props_into_table_with_indexer
TableTests.casting_tables_with_props_into_table_with_indexer3
TableTests.casting_tables_with_props_into_table_with_indexer4
TableTests.checked_prop_too_early
TableTests.common_table_element_union_in_call
TableTests.common_table_element_union_in_call_tail
TableTests.confusing_indexing
TableTests.defining_a_method_for_a_builtin_sealed_table_must_fail
TableTests.defining_a_method_for_a_local_sealed_table_must_fail
@ -540,7 +538,6 @@ TypeInfer.type_infer_recursion_limit_no_ice
TypeInferAnyError.assign_prop_to_table_by_calling_any_yields_any
TypeInferAnyError.can_get_length_of_any
TypeInferAnyError.for_in_loop_iterator_is_any2
TypeInferAnyError.for_in_loop_iterator_returns_any
TypeInferAnyError.length_of_error_type_does_not_produce_an_error
TypeInferAnyError.replace_every_free_type_when_unifying_a_complex_function_with_any
TypeInferAnyError.union_of_types_regression_test
@ -561,7 +558,6 @@ TypeInferClasses.table_indexers_are_invariant
TypeInferClasses.table_properties_are_invariant
TypeInferClasses.warn_when_prop_almost_matches
TypeInferClasses.we_can_report_when_someone_is_trying_to_use_a_table_rather_than_a_class
TypeInferFunctions.another_indirect_function_case_where_it_is_ok_to_provide_too_many_arguments
TypeInferFunctions.another_recursive_local_function
TypeInferFunctions.call_o_with_another_argument_after_foo_was_quantified
TypeInferFunctions.calling_function_with_anytypepack_doesnt_leak_free_types
@ -586,13 +582,14 @@ TypeInferFunctions.function_statement_sealed_table_assignment_through_indexer
TypeInferFunctions.higher_order_function_2
TypeInferFunctions.higher_order_function_4
TypeInferFunctions.ignored_return_values
TypeInferFunctions.improved_function_arg_mismatch_error_nonstrict
TypeInferFunctions.improved_function_arg_mismatch_errors
TypeInferFunctions.inconsistent_higher_order_function
TypeInferFunctions.inconsistent_return_types
TypeInferFunctions.infer_anonymous_function_arguments
TypeInferFunctions.infer_return_type_from_selected_overload
TypeInferFunctions.infer_that_function_does_not_return_a_table
TypeInferFunctions.it_is_ok_not_to_supply_enough_retvals
TypeInferFunctions.it_is_ok_to_oversaturate_a_higher_order_function_argument
TypeInferFunctions.list_all_overloads_if_no_overload_takes_given_argument_count
TypeInferFunctions.list_only_alternative_overloads_that_match_argument_count
TypeInferFunctions.no_lossy_function_type