luau/prototyping/Luau/OpSem.agda

93 lines
2.8 KiB
Agda
Raw Normal View History

module Luau.OpSem where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (just)
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg)
open import Luau.Value using (addr; val)
data _⊢_⟶ᴮ_⊣_ {a} : Heap a Block a Block a Heap a Set
data _⊢_⟶ᴱ_⊣_ {a} : Heap a Expr a Expr a Heap a Set
data _⊢_⟶ᴱ_⊣_ where
nil : {H}
-------------------
H nil ⟶ᴱ nil H
function : {H H a F B}
H H a (function F is B end)
-------------------------------------------
H (function F is B end) ⟶ᴱ (addr a) H
app : {H H M M N}
H M ⟶ᴱ M H
-----------------------------
H (M $ N) ⟶ᴱ (M $ N) H
beta : {H M a F B}
H [ a ] just(function F is B end)
-----------------------------------------------------
H (addr a $ M) ⟶ᴱ (block (fun F) is local (arg F) M B end) H
block : {H H B B b}
H B ⟶ᴮ B H
----------------------------------------------------
H (block b is B end) ⟶ᴱ (block b is B end) H
return : {H V B b}
--------------------------------------------------------
H (block b is return (val V) B end) ⟶ᴱ (val V) H
done : {H b}
---------------------------------
H (block b is done end) ⟶ᴱ nil H
data _⊢_⟶ᴮ_⊣_ where
local : {H H x M M B}
H M ⟶ᴱ M H
-------------------------------------------------
H (local x M B) ⟶ᴮ (local x M B) H
subst : {H x v B}
------------------------------------------------------
H (local x val v B) ⟶ᴮ (B [ v / name x ]ᴮ) H
function : {H H a F B C}
H H a (function F is C end)
--------------------------------------------------------------
H (function F is C end B) ⟶ᴮ (B [ addr a / fun F ]ᴮ) H
return : {H H M M B}
H M ⟶ᴱ M H
--------------------------------------------
H (return M B) ⟶ᴮ (return M B) H
data _⊢_⟶*_⊣_ {a} : Heap a Block a Block a Heap a Set where
refl : {H B}
----------------
H B ⟶* B H
step : {H H H″ B B B″}
H B ⟶ᴮ B H
H B ⟶* B″ H″
------------------
H B ⟶* B″ H″