2021-10-30 04:25:12 +08:00
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Lua SciMark (2010-12-20).
|
|
|
|
--
|
|
|
|
-- A literal translation of SciMark 2.0a, written in Java and C.
|
|
|
|
-- Credits go to the original authors Roldan Pozo and Bruce Miller.
|
|
|
|
-- See: http://math.nist.gov/scimark2/
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Copyright (C) 2006-2010 Mike Pall. All rights reserved.
|
|
|
|
--
|
|
|
|
-- Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
-- a copy of this software and associated documentation files (the
|
|
|
|
-- "Software"), to deal in the Software without restriction, including
|
|
|
|
-- without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
-- distribute, sublicense, and/or sell copies of the Software, and to
|
|
|
|
-- permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
-- the following conditions:
|
|
|
|
--
|
|
|
|
-- The above copyright notice and this permission notice shall be
|
|
|
|
-- included in all copies or substantial portions of the Software.
|
|
|
|
--
|
|
|
|
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
-- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
|
|
-- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
|
|
-- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
|
|
-- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
|
|
-- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
--
|
|
|
|
-- [ MIT license: http://www.opensource.org/licenses/mit-license.php ]
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
2021-11-04 22:50:46 +08:00
|
|
|
-- Modification to be compatible with Lua 5.3
|
2021-10-30 04:25:12 +08:00
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
2023-12-03 06:20:54 +08:00
|
|
|
local bench = script and require(script.Parent.bench_support) or pcall(require, "bench_support") or require("../../bench_support")
|
2021-10-30 04:25:12 +08:00
|
|
|
|
|
|
|
function test()
|
|
|
|
|
|
|
|
if table and table.unpack then
|
|
|
|
unpack = table.unpack
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local SCIMARK_VERSION = "2010-12-10"
|
|
|
|
local SCIMARK_COPYRIGHT = "Copyright (C) 2006-2010 Mike Pall"
|
|
|
|
|
|
|
|
local MIN_TIME = 0.2
|
|
|
|
local RANDOM_SEED = 101009 -- Must be odd.
|
|
|
|
local SIZE_SELECT = "small"
|
|
|
|
|
|
|
|
local benchmarks = {
|
|
|
|
"FFT", "SOR", "MC", "SPARSE", "LU",
|
|
|
|
small = {
|
|
|
|
FFT = { 1024 },
|
|
|
|
SOR = { 100 },
|
|
|
|
MC = { },
|
|
|
|
SPARSE = { 1000, 5000 },
|
|
|
|
LU = { 100 },
|
|
|
|
},
|
|
|
|
large = {
|
|
|
|
FFT = { 1048576 },
|
|
|
|
SOR = { 1000 },
|
|
|
|
MC = { },
|
|
|
|
SPARSE = { 100000, 1000000 },
|
|
|
|
LU = { 1000 },
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
local abs, log, sin, floor = math.abs, math.log, math.sin, math.floor
|
|
|
|
local pi, clock = math.pi, os.clock
|
|
|
|
local format = string.format
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Select array type: Lua tables or native (FFI) arrays
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local darray, iarray
|
|
|
|
|
|
|
|
local function array_init()
|
|
|
|
if jit and jit.status and jit.status() then
|
|
|
|
local ok, ffi = pcall(require, "ffi")
|
|
|
|
if ok then
|
|
|
|
darray = ffi.typeof("double[?]")
|
|
|
|
iarray = ffi.typeof("int[?]")
|
|
|
|
return
|
|
|
|
end
|
|
|
|
end
|
|
|
|
function darray(n) return {} end
|
|
|
|
iarray = darray
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- This is a Lagged Fibonacci Pseudo-random Number Generator with
|
|
|
|
-- j, k, M = 5, 17, 31. Pretty weak, but same as C/Java SciMark.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local rand, rand_init
|
|
|
|
|
|
|
|
if jit and jit.status and jit.status() then
|
|
|
|
-- LJ2 has bit operations and zero-based arrays (internally).
|
|
|
|
local bit = require("bit")
|
|
|
|
local band, sar = bit.band, bit.arshift
|
|
|
|
function rand_init(seed)
|
|
|
|
local Rm, Rj, Ri = iarray(17), 16, 11
|
|
|
|
for i=0,16 do Rm[i] = 0 end
|
|
|
|
for i=16,0,-1 do
|
|
|
|
seed = band(seed*9069, 0x7fffffff)
|
|
|
|
Rm[i] = seed
|
|
|
|
end
|
|
|
|
function rand()
|
|
|
|
local i = band(Ri+1, sar(Ri-16, 31))
|
|
|
|
local j = band(Rj+1, sar(Rj-16, 31))
|
|
|
|
Ri, Rj = i, j
|
|
|
|
local k = band(Rm[i] - Rm[j], 0x7fffffff)
|
|
|
|
Rm[j] = k
|
|
|
|
return k * (1.0/2147483647.0)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
else
|
|
|
|
-- Better for standard Lua with one-based arrays and without bit operations.
|
|
|
|
function rand_init(seed)
|
|
|
|
local Rm, Rj = {}, 1
|
|
|
|
for i=1,17 do Rm[i] = 0 end
|
|
|
|
for i=17,1,-1 do
|
|
|
|
seed = (seed*9069) % (2^31)
|
|
|
|
Rm[i] = seed
|
|
|
|
end
|
|
|
|
function rand()
|
|
|
|
local j, m = Rj, Rm
|
|
|
|
local h = j - 5
|
|
|
|
if h < 1 then h = h + 17 end
|
|
|
|
local k = m[h] - m[j]
|
|
|
|
if k < 0 then k = k + 2147483647 end
|
|
|
|
m[j] = k
|
|
|
|
if j < 17 then Rj = j + 1 else Rj = 1 end
|
|
|
|
return k * (1.0/2147483647.0)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
local function random_vector(n)
|
|
|
|
local v = darray(n+1)
|
|
|
|
for x=1,n do v[x] = rand() end
|
|
|
|
return v
|
|
|
|
end
|
|
|
|
|
|
|
|
local function random_matrix(m, n)
|
|
|
|
local a = {}
|
|
|
|
for y=1,m do
|
|
|
|
local v = darray(n+1)
|
|
|
|
a[y] = v
|
|
|
|
for x=1,n do v[x] = rand() end
|
|
|
|
end
|
|
|
|
return a
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- FFT: Fast Fourier Transform.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function fft_bitreverse(v, n)
|
|
|
|
local j = 0
|
|
|
|
for i=0,2*n-4,2 do
|
|
|
|
if i < j then
|
|
|
|
v[i+1], v[i+2], v[j+1], v[j+2] = v[j+1], v[j+2], v[i+1], v[i+2]
|
|
|
|
end
|
|
|
|
local k = n
|
|
|
|
while k <= j do j = j - k; k = k / 2 end
|
|
|
|
j = j + k
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
local function fft_transform(v, n, dir)
|
|
|
|
if n <= 1 then return end
|
|
|
|
fft_bitreverse(v, n)
|
|
|
|
local dual = 1
|
|
|
|
repeat
|
|
|
|
local dual2 = 2*dual
|
|
|
|
for i=1,2*n-1,2*dual2 do
|
|
|
|
local j = i+dual2
|
|
|
|
local ir, ii = v[i], v[i+1]
|
|
|
|
local jr, ji = v[j], v[j+1]
|
|
|
|
v[j], v[j+1] = ir - jr, ii - ji
|
|
|
|
v[i], v[i+1] = ir + jr, ii + ji
|
|
|
|
end
|
|
|
|
local theta = dir * pi / dual
|
|
|
|
local s, s2 = sin(theta), 2.0 * sin(theta * 0.5)^2
|
|
|
|
local wr, wi = 1.0, 0.0
|
|
|
|
for a=3,dual2-1,2 do
|
|
|
|
wr, wi = wr - s*wi - s2*wr, wi + s*wr - s2*wi
|
|
|
|
for i=a,a+2*(n-dual2),2*dual2 do
|
|
|
|
local j = i+dual2
|
|
|
|
local jr, ji = v[j], v[j+1]
|
|
|
|
local dr, di = wr*jr - wi*ji, wr*ji + wi*jr
|
|
|
|
local ir, ii = v[i], v[i+1]
|
|
|
|
v[j], v[j+1] = ir - dr, ii - di
|
|
|
|
v[i], v[i+1] = ir + dr, ii + di
|
|
|
|
end
|
|
|
|
end
|
|
|
|
dual = dual2
|
|
|
|
until dual >= n
|
|
|
|
end
|
|
|
|
|
|
|
|
function benchmarks.FFT(n)
|
|
|
|
local l2n = log(n)/log(2)
|
|
|
|
if l2n % 1 ~= 0 then
|
|
|
|
io.stderr:write("Error: FFT data length is not a power of 2\n")
|
|
|
|
os.exit(1)
|
|
|
|
end
|
|
|
|
local v = random_vector(n*2)
|
|
|
|
return function(cycles)
|
|
|
|
local norm = 1.0 / n
|
|
|
|
for p=1,cycles do
|
|
|
|
fft_transform(v, n, -1)
|
|
|
|
fft_transform(v, n, 1)
|
|
|
|
for i=1,n*2 do v[i] = v[i] * norm end
|
|
|
|
end
|
|
|
|
return ((5*n-2)*l2n + 2*(n+1)) * cycles
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- SOR: Jacobi Successive Over-Relaxation.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function sor_run(mat, m, n, cycles, omega)
|
|
|
|
local om4, om1 = omega*0.25, 1.0-omega
|
|
|
|
m = m - 1
|
|
|
|
n = n - 1
|
|
|
|
for i=1,cycles do
|
|
|
|
for y=2,m do
|
|
|
|
local v, vp, vn = mat[y], mat[y-1], mat[y+1]
|
|
|
|
for x=2,n do
|
|
|
|
v[x] = om4*((vp[x]+vn[x])+(v[x-1]+v[x+1])) + om1*v[x]
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
function benchmarks.SOR(n)
|
|
|
|
local mat = random_matrix(n, n)
|
|
|
|
return function(cycles)
|
|
|
|
sor_run(mat, n, n, cycles, 1.25)
|
|
|
|
return (n-1)*(n-1)*cycles*6
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- MC: Monte Carlo Integration.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function mc_integrate(cycles)
|
|
|
|
local under_curve = 0
|
|
|
|
local rand = rand
|
|
|
|
for i=1,cycles do
|
|
|
|
local x = rand()
|
|
|
|
local y = rand()
|
|
|
|
if x*x + y*y <= 1.0 then under_curve = under_curve + 1 end
|
|
|
|
end
|
|
|
|
return (under_curve/cycles) * 4
|
|
|
|
end
|
|
|
|
|
|
|
|
function benchmarks.MC()
|
|
|
|
return function(cycles)
|
|
|
|
local res = mc_integrate(cycles)
|
|
|
|
assert(math.sqrt(cycles)*math.abs(res-math.pi) < 5.0, "bad MC result")
|
|
|
|
return cycles * 4 -- Way off, but same as SciMark in C/Java.
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Sparse Matrix Multiplication.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function sparse_mult(n, cycles, vy, val, row, col, vx)
|
|
|
|
for p=1,cycles do
|
|
|
|
for r=1,n do
|
|
|
|
local sum = 0
|
|
|
|
for i=row[r],row[r+1]-1 do sum = sum + vx[col[i]] * val[i] end
|
|
|
|
vy[r] = sum
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
function benchmarks.SPARSE(n, nz)
|
|
|
|
local nr = floor(nz/n)
|
|
|
|
local anz = nr*n
|
|
|
|
local vx = random_vector(n)
|
|
|
|
local val = random_vector(anz)
|
|
|
|
local vy, col, row = darray(n+1), iarray(nz+1), iarray(n+2)
|
|
|
|
row[1] = 1
|
|
|
|
for r=1,n do
|
|
|
|
local step = floor(r/nr)
|
|
|
|
if step < 1 then step = 1 end
|
|
|
|
local rr = row[r]
|
|
|
|
row[r+1] = rr+nr
|
|
|
|
for i=0,nr-1 do col[rr+i] = 1+i*step end
|
|
|
|
end
|
|
|
|
return function(cycles)
|
|
|
|
sparse_mult(n, cycles, vy, val, row, col, vx)
|
|
|
|
return anz*cycles*2
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- LU: Dense Matrix Factorization.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function lu_factor(a, pivot, m, n)
|
|
|
|
local min_m_n = m < n and m or n
|
|
|
|
for j=1,min_m_n do
|
|
|
|
local jp, t = j, abs(a[j][j])
|
|
|
|
for i=j+1,m do
|
|
|
|
local ab = abs(a[i][j])
|
|
|
|
if ab > t then
|
|
|
|
jp = i
|
|
|
|
t = ab
|
|
|
|
end
|
|
|
|
end
|
|
|
|
pivot[j] = jp
|
|
|
|
if a[jp][j] == 0 then error("zero pivot") end
|
|
|
|
if jp ~= j then a[j], a[jp] = a[jp], a[j] end
|
|
|
|
if j < m then
|
|
|
|
local recp = 1.0 / a[j][j]
|
|
|
|
for k=j+1,m do
|
|
|
|
local v = a[k]
|
|
|
|
v[j] = v[j] * recp
|
|
|
|
end
|
|
|
|
end
|
|
|
|
if j < min_m_n then
|
|
|
|
for i=j+1,m do
|
|
|
|
local vi, vj = a[i], a[j]
|
|
|
|
local eij = vi[j]
|
|
|
|
for k=j+1,n do vi[k] = vi[k] - eij * vj[k] end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
local function matrix_alloc(m, n)
|
|
|
|
local a = {}
|
|
|
|
for y=1,m do a[y] = darray(n+1) end
|
|
|
|
return a
|
|
|
|
end
|
|
|
|
|
|
|
|
local function matrix_copy(dst, src, m, n)
|
|
|
|
for y=1,m do
|
|
|
|
local vd, vs = dst[y], src[y]
|
|
|
|
for x=1,n do vd[x] = vs[x] end
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
function benchmarks.LU(n)
|
|
|
|
local mat = random_matrix(n, n)
|
|
|
|
local tmp = matrix_alloc(n, n)
|
|
|
|
local pivot = iarray(n+1)
|
|
|
|
return function(cycles)
|
|
|
|
for i=1,cycles do
|
|
|
|
matrix_copy(tmp, mat, n, n)
|
|
|
|
lu_factor(tmp, pivot, n, n)
|
|
|
|
end
|
|
|
|
return 2.0/3.0*n*n*n*cycles
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
-- Main program.
|
|
|
|
------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
local function printf(...)
|
|
|
|
print(format(...))
|
|
|
|
end
|
|
|
|
|
|
|
|
local function fmtparams(p1, p2)
|
|
|
|
if p2 then return format("[%d, %d]", p1, p2)
|
|
|
|
elseif p1 then return format("[%d]", p1) end
|
|
|
|
return ""
|
|
|
|
end
|
|
|
|
|
|
|
|
local function measure(min_time, name, ...)
|
|
|
|
array_init()
|
|
|
|
rand_init(RANDOM_SEED)
|
|
|
|
local run = benchmarks[name](...)
|
|
|
|
--[[local cycles = 1
|
|
|
|
repeat
|
|
|
|
local tm = clock()
|
|
|
|
local flops = run(cycles, ...)
|
|
|
|
tm = clock() - tm
|
|
|
|
if tm >= min_time then
|
|
|
|
local res = flops / tm * 1.0e-6
|
|
|
|
local p1, p2 = ...
|
|
|
|
printf("%-7s %8.2f %s\n", name, res, fmtparams(...))
|
|
|
|
return res
|
|
|
|
end
|
|
|
|
cycles = cycles * 2
|
|
|
|
until false]]
|
|
|
|
|
|
|
|
run(10, ...)
|
|
|
|
return 10
|
|
|
|
end
|
|
|
|
|
|
|
|
printf("Lua SciMark %s based on SciMark 2.0a. %s.\n\n",
|
|
|
|
SCIMARK_VERSION, SCIMARK_COPYRIGHT)
|
|
|
|
|
|
|
|
while arg and arg[1] do
|
|
|
|
local a = table.remove(arg, 1)
|
|
|
|
if a == "-noffi" then
|
|
|
|
package.preload.ffi = nil
|
|
|
|
elseif a == "-small" then
|
|
|
|
SIZE_SELECT = "small"
|
|
|
|
elseif a == "-large" then
|
|
|
|
SIZE_SELECT = "large"
|
|
|
|
elseif benchmarks[a] then
|
|
|
|
local p = benchmarks[SIZE_SELECT][a]
|
|
|
|
measure(MIN_TIME, a, tonumber(arg[1]) or p[1], tonumber(arg[2]) or p[2])
|
|
|
|
return
|
|
|
|
else
|
|
|
|
printf("Usage: scimark [-noffi] [-small|-large] [BENCH params...]\n\n")
|
|
|
|
printf("BENCH -small -large\n")
|
|
|
|
printf("---------------------------------------\n")
|
|
|
|
for _,name in ipairs(benchmarks) do
|
|
|
|
printf("%-7s %-13s %s\n", name,
|
|
|
|
fmtparams(unpack(benchmarks.small[name])),
|
|
|
|
fmtparams(unpack(benchmarks.large[name])))
|
|
|
|
end
|
|
|
|
printf("\n")
|
|
|
|
os.exit(1)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
local params = benchmarks[SIZE_SELECT]
|
|
|
|
local sum = 0
|
|
|
|
for _,name in ipairs(benchmarks) do
|
|
|
|
sum = sum + measure(MIN_TIME, name, unpack(params[name]))
|
|
|
|
end
|
|
|
|
--printf("\nSciMark %8.2f [%s problem sizes]\n", sum / #benchmarks, SIZE_SELECT)
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
bench.runCode(test, "scimark")
|