luau/Analysis/include/Luau/Normalize.h

368 lines
12 KiB
C
Raw Normal View History

2022-04-15 07:57:43 +08:00
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
2022-04-15 07:57:43 +08:00
#include "Luau/NotNull.h"
#include "Luau/Type.h"
#include "Luau/UnifierSharedState.h"
#include <memory>
2022-04-15 07:57:43 +08:00
namespace Luau
{
struct InternalErrorReporter;
struct Module;
struct Scope;
struct BuiltinTypes;
using ModulePtr = std::shared_ptr<Module>;
2022-04-15 07:57:43 +08:00
bool isSubtype(TypeId subTy, TypeId superTy, NotNull<Scope> scope, NotNull<BuiltinTypes> builtinTypes, InternalErrorReporter& ice);
bool isSubtype(TypePackId subTy, TypePackId superTy, NotNull<Scope> scope, NotNull<BuiltinTypes> builtinTypes, InternalErrorReporter& ice);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-18 03:20:37 +08:00
bool isConsistentSubtype(TypeId subTy, TypeId superTy, NotNull<Scope> scope, NotNull<BuiltinTypes> builtinTypes, InternalErrorReporter& ice);
bool isConsistentSubtype(TypePackId subTy, TypePackId superTy, NotNull<Scope> scope, NotNull<BuiltinTypes> builtinTypes, InternalErrorReporter& ice);
class TypeIds
{
private:
std::unordered_set<TypeId> types;
std::vector<TypeId> order;
std::size_t hash = 0;
public:
using iterator = std::vector<TypeId>::iterator;
using const_iterator = std::vector<TypeId>::const_iterator;
TypeIds(const TypeIds&) = default;
TypeIds(TypeIds&&) = default;
TypeIds() = default;
~TypeIds() = default;
TypeIds& operator=(TypeIds&&) = default;
void insert(TypeId ty);
/// Erase every element that does not also occur in tys
void retain(const TypeIds& tys);
void clear();
TypeId front() const;
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
iterator erase(const_iterator it);
size_t size() const;
bool empty() const;
size_t count(TypeId ty) const;
template<class Iterator>
void insert(Iterator begin, Iterator end)
{
for (Iterator it = begin; it != end; ++it)
insert(*it);
}
bool operator==(const TypeIds& there) const;
size_t getHash() const;
};
} // namespace Luau
template<>
struct std::hash<Luau::TypeIds>
{
std::size_t operator()(const Luau::TypeIds& tys) const
{
return tys.getHash();
}
};
template<>
struct std::hash<const Luau::TypeIds*>
{
std::size_t operator()(const Luau::TypeIds* tys) const
{
return tys->getHash();
}
};
template<>
struct std::equal_to<Luau::TypeIds>
{
bool operator()(const Luau::TypeIds& here, const Luau::TypeIds& there) const
{
return here == there;
}
};
template<>
struct std::equal_to<const Luau::TypeIds*>
{
bool operator()(const Luau::TypeIds* here, const Luau::TypeIds* there) const
{
return *here == *there;
}
};
namespace Luau
{
/** A normalized string type is either `string` (represented by `nullopt`) or a
* union of string singletons.
*
* The representation is as follows:
*
* * A union of string singletons is finite and includes the singletons named by
* the `singletons` field.
* * An intersection of negated string singletons is cofinite and includes the
* singletons excluded by the `singletons` field. It is implied that cofinite
* values are exclusions from `string` itself.
* * The `string` data type is a cofinite set minus zero elements.
* * The `never` data type is a finite set plus zero elements.
*/
struct NormalizedStringType
{
// When false, this type represents a union of singleton string types.
// eg "a" | "b" | "c"
//
// When true, this type represents string intersected with negated string
// singleton types.
// eg string & ~"a" & ~"b" & ...
bool isCofinite = false;
std::map<std::string, TypeId> singletons;
void resetToString();
void resetToNever();
bool isNever() const;
bool isString() const;
/// Returns true if the string has finite domain.
///
/// Important subtlety: This method returns true for `never`. The empty set
/// is indeed an empty set.
bool isUnion() const;
/// Returns true if the string has infinite domain.
bool isIntersection() const;
bool includes(const std::string& str) const;
static const NormalizedStringType never;
NormalizedStringType();
NormalizedStringType(bool isCofinite, std::map<std::string, TypeId> singletons);
};
bool isSubtype(const NormalizedStringType& subStr, const NormalizedStringType& superStr);
struct NormalizedClassType
{
/** Has the following structure:
*
* (C1 & ~N11 & ... & ~Nn) | (C2 & ~N21 & ... & ~N2n) | ...
*
* C2 is either not a subtype of any other Cm, or it is and is also a
* subtype of one of Nmn types within the same cluster.
*
* Each TypeId is a class type.
*/
std::unordered_map<TypeId, TypeIds> classes;
/**
* In order to maintain a consistent insertion order, we use this vector to
* keep track of it. An ordered std::map will sort by pointer identity,
* which is undesirable.
*/
std::vector<TypeId> ordering;
void pushPair(TypeId ty, TypeIds negations);
void resetToNever();
bool isNever() const;
};
// A normalized function type can be `never`, the top function type `function`,
// or an intersection of function types.
//
// NOTE: type normalization can fail on function types with generics (e.g.
// because we do not support unions and intersections of generic type packs), so
// this type may contain `error`.
struct NormalizedFunctionType
{
bool isTop = false;
TypeIds parts;
void resetToNever();
void resetToTop();
bool isNever() const;
};
// A normalized generic/free type is a union, where each option is of the form (X & T) where
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-18 03:20:37 +08:00
// * X is either a free type, a generic or a blocked type.
// * T is a normalized type.
struct NormalizedType;
using NormalizedTyvars = std::unordered_map<TypeId, std::unique_ptr<NormalizedType>>;
bool isInhabited_DEPRECATED(const NormalizedType& norm);
// A normalized type is either any, unknown, or one of the form P | T | F | G where
// * P is a union of primitive types (including singletons, classes and the error type)
// * T is a union of table types
// * F is a union of an intersection of function types
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-18 03:20:37 +08:00
// * G is a union of generic/free/blocked types, intersected with a normalized type
struct NormalizedType
{
// The top part of the type.
// This type is either never, unknown, or any.
// If this type is not never, all the other fields are null.
TypeId tops;
// The boolean part of the type.
// This type is either never, boolean type, or a boolean singleton.
TypeId booleans;
NormalizedClassType classes;
// The error part of the type.
// This type is either never or the error type.
TypeId errors;
// The nil part of the type.
// This type is either never or nil.
TypeId nils;
// The number part of the type.
// This type is either never or number.
TypeId numbers;
// The string part of the type.
// This may be the `string` type, or a union of singletons.
NormalizedStringType strings;
// The thread part of the type.
// This type is either never or thread.
TypeId threads;
// The (meta)table part of the type.
// Each element of this set is a (meta)table type, or the top `table` type.
// An empty set denotes never.
TypeIds tables;
// The function part of the type.
NormalizedFunctionType functions;
// The generic/free part of the type.
NormalizedTyvars tyvars;
NormalizedType(NotNull<BuiltinTypes> builtinTypes);
NormalizedType() = delete;
~NormalizedType() = default;
NormalizedType(const NormalizedType&) = delete;
NormalizedType& operator=(const NormalizedType&) = delete;
NormalizedType(NormalizedType&&) = default;
NormalizedType& operator=(NormalizedType&&) = default;
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-20 03:37:30 +08:00
// IsType functions
/// Returns true if the type is a subtype of function. This includes any and unknown.
bool isFunction() const;
/// Returns true if the type is a subtype of number. This includes any and unknown.
bool isNumber() const;
};
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-20 03:37:30 +08:00
class Normalizer
{
std::unordered_map<TypeId, std::unique_ptr<NormalizedType>> cachedNormals;
std::unordered_map<const TypeIds*, TypeId> cachedIntersections;
std::unordered_map<const TypeIds*, TypeId> cachedUnions;
std::unordered_map<const TypeIds*, std::unique_ptr<TypeIds>> cachedTypeIds;
bool withinResourceLimits();
public:
TypeArena* arena;
NotNull<BuiltinTypes> builtinTypes;
NotNull<UnifierSharedState> sharedState;
Normalizer(TypeArena* arena, NotNull<BuiltinTypes> builtinTypes, NotNull<UnifierSharedState> sharedState);
Normalizer(const Normalizer&) = delete;
Normalizer(Normalizer&&) = delete;
Normalizer() = delete;
~Normalizer() = default;
Normalizer& operator=(Normalizer&&) = delete;
Normalizer& operator=(Normalizer&) = delete;
// If this returns null, the typechecker should emit a "too complex" error
const NormalizedType* normalize(TypeId ty);
void clearNormal(NormalizedType& norm);
// ------- Cached TypeIds
TypeId unionType(TypeId here, TypeId there);
TypeId intersectionType(TypeId here, TypeId there);
const TypeIds* cacheTypeIds(TypeIds tys);
void clearCaches();
// ------- Normalizing unions
void unionTysWithTy(TypeIds& here, TypeId there);
TypeId unionOfTops(TypeId here, TypeId there);
TypeId unionOfBools(TypeId here, TypeId there);
void unionClassesWithClass(TypeIds& heres, TypeId there);
void unionClasses(TypeIds& heres, const TypeIds& theres);
void unionClassesWithClass(NormalizedClassType& heres, TypeId there);
void unionClasses(NormalizedClassType& heres, const NormalizedClassType& theres);
void unionStrings(NormalizedStringType& here, const NormalizedStringType& there);
std::optional<TypePackId> unionOfTypePacks(TypePackId here, TypePackId there);
std::optional<TypeId> unionOfFunctions(TypeId here, TypeId there);
std::optional<TypeId> unionSaturatedFunctions(TypeId here, TypeId there);
void unionFunctionsWithFunction(NormalizedFunctionType& heress, TypeId there);
void unionFunctions(NormalizedFunctionType& heress, const NormalizedFunctionType& theress);
void unionTablesWithTable(TypeIds& heres, TypeId there);
void unionTables(TypeIds& heres, const TypeIds& theres);
bool unionNormals(NormalizedType& here, const NormalizedType& there, int ignoreSmallerTyvars = -1);
bool unionNormalWithTy(NormalizedType& here, TypeId there, int ignoreSmallerTyvars = -1);
// ------- Negations
std::optional<NormalizedType> negateNormal(const NormalizedType& here);
TypeIds negateAll(const TypeIds& theres);
TypeId negate(TypeId there);
void subtractPrimitive(NormalizedType& here, TypeId ty);
void subtractSingleton(NormalizedType& here, TypeId ty);
// ------- Normalizing intersections
TypeId intersectionOfTops(TypeId here, TypeId there);
TypeId intersectionOfBools(TypeId here, TypeId there);
void intersectClasses(NormalizedClassType& heres, const NormalizedClassType& theres);
void intersectClassesWithClass(NormalizedClassType& heres, TypeId there);
void intersectStrings(NormalizedStringType& here, const NormalizedStringType& there);
std::optional<TypePackId> intersectionOfTypePacks(TypePackId here, TypePackId there);
std::optional<TypeId> intersectionOfTables(TypeId here, TypeId there);
void intersectTablesWithTable(TypeIds& heres, TypeId there);
void intersectTables(TypeIds& heres, const TypeIds& theres);
std::optional<TypeId> intersectionOfFunctions(TypeId here, TypeId there);
void intersectFunctionsWithFunction(NormalizedFunctionType& heress, TypeId there);
void intersectFunctions(NormalizedFunctionType& heress, const NormalizedFunctionType& theress);
bool intersectTyvarsWithTy(NormalizedTyvars& here, TypeId there);
bool intersectNormals(NormalizedType& here, const NormalizedType& there, int ignoreSmallerTyvars = -1);
bool intersectNormalWithTy(NormalizedType& here, TypeId there);
bool normalizeIntersections(const std::vector<TypeId>& intersections, NormalizedType& outType);
// Check for inhabitance
bool isInhabited(TypeId ty, std::unordered_set<TypeId> seen = {});
bool isInhabited(const NormalizedType* norm, std::unordered_set<TypeId> seen = {});
// Check for intersections being inhabited
bool isIntersectionInhabited(TypeId left, TypeId right);
// -------- Convert back from a normalized type to a type
TypeId typeFromNormal(const NormalizedType& norm);
};
2022-04-15 07:57:43 +08:00
} // namespace Luau