luau/CodeGen/include/Luau/AssemblyBuilderX64.h

272 lines
9.4 KiB
C
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Common.h"
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-13 01:50:47 +08:00
#include "Luau/DenseHash.h"
#include "Luau/Label.h"
#include "Luau/ConditionX64.h"
#include "Luau/OperandX64.h"
#include "Luau/RegisterX64.h"
#include <string>
#include <vector>
namespace Luau
{
namespace CodeGen
{
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-04 04:21:14 +08:00
namespace X64
{
enum class RoundingModeX64
{
RoundToNearestEven = 0b00,
RoundToNegativeInfinity = 0b01,
RoundToPositiveInfinity = 0b10,
RoundToZero = 0b11,
};
enum class AlignmentDataX64
{
Nop,
Int3,
Ud2, // int3 will be used as a fall-back if it doesn't fit
};
enum class ABIX64
{
Windows,
SystemV,
};
class AssemblyBuilderX64
{
public:
explicit AssemblyBuilderX64(bool logText, ABIX64 abi);
explicit AssemblyBuilderX64(bool logText);
~AssemblyBuilderX64();
// Base two operand instructions with 9 opcode selection
void add(OperandX64 lhs, OperandX64 rhs);
void sub(OperandX64 lhs, OperandX64 rhs);
void cmp(OperandX64 lhs, OperandX64 rhs);
void and_(OperandX64 lhs, OperandX64 rhs);
void or_(OperandX64 lhs, OperandX64 rhs);
void xor_(OperandX64 lhs, OperandX64 rhs);
// Binary shift instructions with special rhs handling
void sal(OperandX64 lhs, OperandX64 rhs);
void sar(OperandX64 lhs, OperandX64 rhs);
void shl(OperandX64 lhs, OperandX64 rhs);
void shr(OperandX64 lhs, OperandX64 rhs);
void rol(OperandX64 lhs, OperandX64 rhs);
void ror(OperandX64 lhs, OperandX64 rhs);
// Two operand mov instruction has additional specialized encodings
void mov(OperandX64 lhs, OperandX64 rhs);
void mov64(RegisterX64 lhs, int64_t imm);
void movsx(RegisterX64 lhs, OperandX64 rhs);
void movzx(RegisterX64 lhs, OperandX64 rhs);
// Base one operand instruction with 2 opcode selection
void div(OperandX64 op);
void idiv(OperandX64 op);
void mul(OperandX64 op);
void imul(OperandX64 op);
void neg(OperandX64 op);
void not_(OperandX64 op);
void dec(OperandX64 op);
void inc(OperandX64 op);
// Additional forms of imul
void imul(OperandX64 lhs, OperandX64 rhs);
void imul(OperandX64 dst, OperandX64 lhs, int32_t rhs);
void test(OperandX64 lhs, OperandX64 rhs);
void lea(OperandX64 lhs, OperandX64 rhs);
void setcc(ConditionX64 cond, OperandX64 op);
void cmov(ConditionX64 cond, RegisterX64 lhs, OperandX64 rhs);
void push(OperandX64 op);
void pop(OperandX64 op);
void ret();
// Control flow
void jcc(ConditionX64 cond, Label& label);
void jmp(Label& label);
void jmp(OperandX64 op);
2022-07-08 09:22:39 +08:00
void call(Label& label);
void call(OperandX64 op);
void lea(RegisterX64 lhs, Label& label);
2022-07-22 05:16:54 +08:00
void int3();
void ud2();
2022-07-22 05:16:54 +08:00
void bsr(RegisterX64 dst, OperandX64 src);
void bsf(RegisterX64 dst, OperandX64 src);
// Code alignment
void nop(uint32_t length = 1);
void align(uint32_t alignment, AlignmentDataX64 data = AlignmentDataX64::Nop);
// AVX
void vaddpd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vaddps(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vaddsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vaddss(OperandX64 dst, OperandX64 src1, OperandX64 src2);
2022-07-22 05:16:54 +08:00
void vsubsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vmulsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vdivsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vandpd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-04 03:26:13 +08:00
void vandnpd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
2022-07-22 05:16:54 +08:00
void vxorpd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-04 03:26:13 +08:00
void vorpd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
2022-07-22 05:16:54 +08:00
void vucomisd(OperandX64 src1, OperandX64 src2);
void vcvttsd2si(OperandX64 dst, OperandX64 src);
void vcvtsi2sd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vcvtsd2ss(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vroundsd(OperandX64 dst, OperandX64 src1, OperandX64 src2, RoundingModeX64 roundingMode); // inexact
2022-07-22 05:16:54 +08:00
void vsqrtpd(OperandX64 dst, OperandX64 src);
void vsqrtps(OperandX64 dst, OperandX64 src);
void vsqrtsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vsqrtss(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vmovsd(OperandX64 dst, OperandX64 src);
void vmovsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vmovss(OperandX64 dst, OperandX64 src);
void vmovss(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vmovapd(OperandX64 dst, OperandX64 src);
void vmovaps(OperandX64 dst, OperandX64 src);
void vmovupd(OperandX64 dst, OperandX64 src);
void vmovups(OperandX64 dst, OperandX64 src);
void vmovq(OperandX64 lhs, OperandX64 rhs);
void vmaxsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vminsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-04 03:26:13 +08:00
void vcmpltsd(OperandX64 dst, OperandX64 src1, OperandX64 src2);
void vblendvpd(RegisterX64 dst, RegisterX64 src1, OperandX64 mask, RegisterX64 src3);
// Run final checks
bool finalize();
// Places a label at current location and returns it
Label setLabel();
// Assigns label position to the current location
void setLabel(Label& label);
Sync to upstream/release/568 (#865) * A small subset of control-flow refinements have been added to recognize type options that are unreachable after a conditional/unconditional code block. (Fixes https://github.com/Roblox/luau/issues/356). Some examples: ```lua local function f(x: string?) if not x then return end -- x is 'string' here end ``` Throwing calls like `error` or `assert(false)` instead of 'return' are also recognized. Existing complex refinements like type/typeof and tagged union checks are expected to work, among others. To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to be removed from `ExperimentalFlags.h`. If will become enabled unconditionally in the near future. * Linter has been integrated into the typechecker analysis so that type-aware lint warnings can work in any mode `Frontend::lint` methods were deprecated, `Frontend::check` has to be used instead with `runLintChecks` option set. Resulting lint warning are located inside `CheckResult`. * Fixed large performance drop and increased memory consumption when array is filled at an offset (Fixes https://github.com/Roblox/luau/issues/590) * Part of [Type error suppression RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md) was implemented making subtyping checks with `any` type transitive. --- In our work on the new type-solver: * `--!nocheck` mode no longer reports type errors * New solver will not be used for `--!nonstrict` modules until all issues with strict mode typechecking are fixed * Added control-flow aware type refinements mentioned earlier In native code generation: * `LOP_NAMECALL` has been translated to IR * `type` and `typeof` builtin fastcalls have been translated to IR/assembly * Additional steps were taken towards arm64 support
2023-03-18 03:20:37 +08:00
// Extracts code offset (in bytes) from label
uint32_t getLabelOffset(const Label& label)
{
LUAU_ASSERT(label.location != ~0u);
return label.location;
}
// Constant allocation (uses rip-relative addressing)
OperandX64 i64(int64_t value);
OperandX64 f32(float value);
OperandX64 f64(double value);
OperandX64 f32x4(float x, float y, float z, float w);
Sync to upstream/release/562 (#828) * Fixed rare use-after-free in analysis during table unification A lot of work these past months went into two new Luau components: * A near full rewrite of the typechecker using a new deferred constraint resolution system * Native code generation for AoT/JiT compilation of VM bytecode into x64 (avx)/arm64 instructions Both of these components are far from finished and we don't provide documentation on building and using them at this point. However, curious community members expressed interest in learning about changes that go into these components each week, so we are now listing them here in the 'sync' pull request descriptions. --- New typechecker can be enabled by setting DebugLuauDeferredConstraintResolution flag to 'true'. It is considered unstable right now, so try it at your own risk. Even though it already provides better type inference than the current one in some cases, our main goal right now is to reach feature parity with current typechecker. Features which improve over the capabilities of the current typechecker are marked as '(NEW)'. Changes to new typechecker: * Regular for loop index and parameters are now typechecked * Invalid type annotations on local variables are ignored to improve autocomplete * Fixed missing autocomplete type suggestions for function arguments * Type reduction is now performed to produce simpler types to be presented to the user (error messages, custom LSPs) * Internally, complex types like '((number | string) & ~(false?)) | string' can be produced, which is just 'string | number' when simplified * Fixed spots where support for unknown and never types was missing * (NEW) Length operator '#' is now valid to use on top table type, this type comes up when doing typeof(x) == "table" guards and isn't available in current typechecker --- Changes to native code generation: * Additional math library fast calls are now lowered to x64: math.ldexp, math.round, math.frexp, math.modf, math.sign and math.clamp
2023-02-04 03:26:13 +08:00
OperandX64 f64x2(double x, double y);
OperandX64 bytes(const void* ptr, size_t size, size_t align = 8);
void logAppend(const char* fmt, ...) LUAU_PRINTF_ATTR(2, 3);
uint32_t getCodeSize() const;
// Resulting data and code that need to be copied over one after the other
// The *end* of 'data' has to be aligned to 16 bytes, this will also align 'code'
std::vector<uint8_t> data;
std::vector<uint8_t> code;
std::string text;
const bool logText = false;
const ABIX64 abi;
private:
// Instruction archetypes
void placeBinary(const char* name, OperandX64 lhs, OperandX64 rhs, uint8_t codeimm8, uint8_t codeimm, uint8_t codeimmImm8, uint8_t code8rev,
uint8_t coderev, uint8_t code8, uint8_t code, uint8_t opreg);
void placeBinaryRegMemAndImm(OperandX64 lhs, OperandX64 rhs, uint8_t code8, uint8_t code, uint8_t codeImm8, uint8_t opreg);
void placeBinaryRegAndRegMem(OperandX64 lhs, OperandX64 rhs, uint8_t code8, uint8_t code);
void placeBinaryRegMemAndReg(OperandX64 lhs, OperandX64 rhs, uint8_t code8, uint8_t code);
void placeUnaryModRegMem(const char* name, OperandX64 op, uint8_t code8, uint8_t code, uint8_t opreg);
void placeShift(const char* name, OperandX64 lhs, OperandX64 rhs, uint8_t opreg);
void placeJcc(const char* name, Label& label, uint8_t cc);
void placeAvx(const char* name, OperandX64 dst, OperandX64 src, uint8_t code, bool setW, uint8_t mode, uint8_t prefix);
void placeAvx(const char* name, OperandX64 dst, OperandX64 src, uint8_t code, uint8_t coderev, bool setW, uint8_t mode, uint8_t prefix);
void placeAvx(const char* name, OperandX64 dst, OperandX64 src1, OperandX64 src2, uint8_t code, bool setW, uint8_t mode, uint8_t prefix);
void placeAvx(
const char* name, OperandX64 dst, OperandX64 src1, OperandX64 src2, uint8_t imm8, uint8_t code, bool setW, uint8_t mode, uint8_t prefix);
// Instruction components
void placeRegAndModRegMem(OperandX64 lhs, OperandX64 rhs, int32_t extraCodeBytes = 0);
void placeModRegMem(OperandX64 rhs, uint8_t regop, int32_t extraCodeBytes = 0);
void placeRex(RegisterX64 op);
void placeRex(OperandX64 op);
void placeRexNoW(OperandX64 op);
void placeRex(RegisterX64 lhs, OperandX64 rhs);
void placeVex(OperandX64 dst, OperandX64 src1, OperandX64 src2, bool setW, uint8_t mode, uint8_t prefix);
void placeImm8Or32(int32_t imm);
void placeImm8(int32_t imm);
void placeImm32(int32_t imm);
void placeImm64(int64_t imm);
void placeLabel(Label& label);
void place(uint8_t byte);
void commit();
LUAU_NOINLINE void extend();
// Data
size_t allocateData(size_t size, size_t align);
// Logging of assembly in text form (Intel asm with VS disassembly formatting)
LUAU_NOINLINE void log(const char* opcode);
LUAU_NOINLINE void log(const char* opcode, OperandX64 op);
LUAU_NOINLINE void log(const char* opcode, OperandX64 op1, OperandX64 op2);
LUAU_NOINLINE void log(const char* opcode, OperandX64 op1, OperandX64 op2, OperandX64 op3);
LUAU_NOINLINE void log(const char* opcode, OperandX64 op1, OperandX64 op2, OperandX64 op3, OperandX64 op4);
LUAU_NOINLINE void log(Label label);
LUAU_NOINLINE void log(const char* opcode, Label label);
LUAU_NOINLINE void log(const char* opcode, RegisterX64 reg, Label label);
void log(OperandX64 op);
const char* getSizeName(SizeX64 size) const;
const char* getRegisterName(RegisterX64 reg) const;
uint32_t nextLabel = 1;
std::vector<Label> pendingLabels;
std::vector<uint32_t> labelLocations;
Sync to upstream/release/576 (#928) * `ClassType` can now have an indexer defined on it. This allows custom types to be used in `t[x]` expressions. * Fixed search for closest executable breakpoint line. Previously, breakpoints might have been skipped in `else` blocks at the end of a function * Fixed how unification is performed for two optional types `a? <: b?`, previously it might have unified either 'a' or 'b' with 'nil'. Note that this fix is not enabled by default yet (see the list in `ExperimentalFlags.h`) In the new type solver, a concept of 'Type Families' has been introduced. Type families can be thought of as type aliases with custom type inference/reduction logic included with them. For example, we can have an `Add<T, U>` type family that will resolve the type that is the result of adding two values together. This will help type inference to figure out what 'T' and 'U' might be when explicit type annotations are not provided. In this update we don't define any type families, but they will be added in the near future. It is also possible for Luau embedders to define their own type families in the global/environment scope. Other changes include: * Fixed scope used to find out which generic types should be included in the function generic type list * Fixed a crash after cyclic bound types were created during unification And in native code generation (jit): * Use of arm64 target on M1 now requires macOS 13 * Entry into native code has been optimized. This is especially important for coroutine call/pcall performance as they involve going through a C call frame * LOP_LOADK(X) translation into IR has been improved to enable type tag/constant propagation * arm64 can use integer immediate values to synthesize floating-point values * x64 assembler removes duplicate 64bit numbers from the data section to save space * Linux `perf` can now be used to profile native Luau code (when running with --codegen-perf CLI argument)
2023-05-13 01:50:47 +08:00
DenseHashMap<uint64_t, int32_t> constCache64;
bool finalized = false;
size_t dataPos = 0;
uint8_t* codePos = nullptr;
uint8_t* codeEnd = nullptr;
};
Sync to upstream/release/566 (#853) * Fixed incorrect lexeme generated for string parts in the middle of an interpolated string (Fixes https://github.com/Roblox/luau/issues/744) * DeprecatedApi lint can report some issues without type inference information * Fixed performance of autocomplete requests when suggestions have large intersection types (Solves https://github.com/Roblox/luau/discussions/847) * Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC: Deprecate table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md)) * With -O2 optimization level, we now optimize builtin calls based on known argument/return count. Note that this change can be observable if `getfenv/setfenv` is used to substitute a builtin, especially if arity is different. Fastcall heavy tests show a 1-2% improvement. * Luau can now be built with clang-cl (Fixes https://github.com/Roblox/luau/issues/736) We also made many improvements to our experimental components. For our new type solver: * Overhauled data flow analysis system, fixed issues with 'repeat' loops, global variables and type annotations * Type refinements now work on generic table indexing with a string literal * Type refinements will properly track potentially 'nil' values (like t[x] for a missing key) and their further refinements * Internal top table type is now isomorphic to `{}` which fixes issues when `typeof(v) == 'table'` type refinement is handled * References to non-existent types in type annotations no longer resolve to 'error' type like in old solver * Improved handling of class unions in property access expressions * Fixed default type packs * Unsealed tables can now have metatables * Restored expected types for function arguments And for native code generation: * Added min and max IR instructions mapping to vminsd/vmaxsd on x64 * We now speculatively extract direct execution fast-paths based on expected types of expressions which provides better optimization opportunities inside a single basic block * Translated existing math fastcalls to IR form to improve tag guard removal and constant propagation
2023-03-04 04:21:14 +08:00
} // namespace X64
} // namespace CodeGen
} // namespace Luau