luau/tools/numprint.py

83 lines
2.3 KiB
Python
Raw Normal View History

2023-01-14 04:36:28 +08:00
#!/usr/bin/python3
2022-01-07 06:10:07 +08:00
# This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
# This code can be used to generate power tables for Schubfach algorithm (see lnumprint.cpp)
import math
import sys
(_, pow10min, pow10max, compact) = sys.argv
pow10min = int(pow10min)
pow10max = int(pow10max)
compact = compact == "True"
# extract high 128 bits of the value
def high128(n, roundup):
L = math.ceil(math.log2(n))
r = 0
for i in range(L - 128, L):
if i >= 0 and (n & (1 << i)) != 0:
r |= (1 << (i - L + 128))
return r + (1 if roundup else 0)
def pow10approx(n):
if n == 0:
return 1 << 127
elif n > 0:
return high128(10**n, 5**n >= 2**128)
else:
# 10^-n is a binary fraction that can't be represented in floating point
# we need to extract top 128 bits of the fraction starting from the first 1
# to get there, we need to divide 2^k by 10^n for a sufficiently large k and repeat the extraction process
p = 10**-n
k = 2**128 * 16**-n # this guarantees that the fraction has more than 128 extra bits
return high128(k // p, True)
def pow5_64(n):
assert(n >= 0)
if n == 0:
return 1 << 63
else:
return high128(5**n, False) >> 64
if not compact:
print("// kPow10Table", pow10min, "..", pow10max)
print("{")
for p in range(pow10min, pow10max + 1):
h = hex(pow10approx(p))[2:]
assert(len(h) == 32)
print(" {0x%s, 0x%s}," % (h[0:16].upper(), h[16:32].upper()))
print("}")
else:
print("// kPow5Table")
print("{")
for i in range(16):
print(" " + hex(pow5_64(i)) + ",")
print("}")
print("// kPow10Table", pow10min, "..", pow10max)
print("{")
for p in range(pow10min, pow10max + 1, 16):
base = pow10approx(p)
errw = 0
for i in range(16):
real = pow10approx(p + i)
appr = (base * pow5_64(i)) >> 64
scale = 1 if appr < (1 << 127) else 0 # 1-bit scale
offset = (appr << scale) - real
assert(offset >= -4 and offset <= 3) # 3-bit offset
assert((appr << scale) >> 64 == real >> 64) # offset only affects low half
assert((appr << scale) - offset == real) # validate full reconstruction
err = (scale << 3) | (offset + 4)
errw |= err << (i * 4)
hbase = hex(base)[2:]
assert(len(hbase) == 32)
assert(errw < 1 << 64)
print(" {0x%s, 0x%s, 0x%16x}," % (hbase[0:16], hbase[16:32], errw))
print("}")