JKQtPlotter/doc/jkqtmathtext_docimages_specialfonts.jkmt
2022-08-10 14:41:26 +02:00

61 lines
4.1 KiB
Plaintext

---
jkqtmathtext_arial.png
--fontroman=Arial --fontmathroman=Arial --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_comicsans.png
--fontroman=Comic Sans MS --fontmathroman=Comic Sans MS --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_comicsans_textonly.png
--fontroman=Comic Sans MS --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_couriernew.png
--fontroman=Courier New --fontmathroman=Courier New --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_timesnewroman.png
--fontroman=Times New Roman --fontmathroman=Times New Roman --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_OldEnglish.png
--fontroman=Old English Text MT --fontmathroman=Old English Text MT --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x)$
---
jkqtmathtext_fira.png
--fontmathroman=Fira Math --fontroman=Fira Sans --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_DejaVuSerif.png
--fontmathroman=DejaVu Serif --fontroman=DejaVu Serif --fontfallbacksymbol=DejaVu Serif --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_DejaVuSans.png
--fontmathroman=DejaVu Sans --fontroman=DejaVu Sans --fontfallbacksymbol=DejaVu Sans --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_mssegoeui.png
--fontmathroman=Segoe UI --fontroman=Segoe UI --fontfallbacksymbol=Segoe UI Symbol --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_computermodern.png
--fontmathroman=CMU Serif --fontroman=SMU Serif --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_asana.png
--fontmathroman=Asana Math --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_xits_all.png
--fontroman=XITS --fontmathroman=XITS Math --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_xits.png
--fontmathroman=XITS Math --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$
---
jkqtmathtext_stix.png
--fontmathroman=STIX Two Math --fontroman=STIX Two Text --sizeincrease=10
Schrödinger's equation: $\left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V\right]\Psi(x)=\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(x),\ \ x\in\mathbb{R}, \Psi(x)\in\mathbb{C}$