.. | ||
jkqtplotter_simpletest_violinplot_and_lib.pro | ||
jkqtplotter_simpletest_violinplot.cpp | ||
jkqtplotter_simpletest_violinplot.pro | ||
README.md |
Example (JKQTPlotter): Violin Plots
[TOC] [JKQTPlotterBasicJKQTPDatastoreStatistics]: @ref JKQTPlotterBasicJKQTPDatastoreStatistics "Advanced 1-Dimensional Statistics with JKQTPDatastore" [statisticslibrary]: @ref jkqtptools_math_statistics "JKQTPlotter Statistics Library" [JKQTPlotterBoxplotStyling]: @ref JKQTPlotterBoxplotStyling "Styling different aspects of boxplots"
This project (see simpletest_violinplot
demonstrates how to use JKQTPlotter to draw violin plots using the classes JKQTPViolinplotVerticalElement
and JKQTPViolinplotHorizontalElement
. Violin plots can be thought of as an extension to box plots, as they are also used to represent the distribution of a random variable, but contain more info than the "simple" 5-number statistics used for boxplots: Violin Plots show an estimate of the desnsity distribution of the random vriable, e.g. calculated as a kernel density estimate, or as a simple histogram. The Plotting classes themselves do not calculate these estimates, but only draw them into the plot. The density estimates are calculated by functions from the [statisticslibrary].
The source code of the main application is (see jkqtplotter_simpletest_violinplot.cpp
.
Generating a test Dataset
First we generate some random numbers from a bimodal distribution (and as a by-product also from two single-distributions that form the bimodal):
size_t randomdatacol1=datastore1->addColumn("random data N(1,1)+N(6,2)");
size_t randomdatacol2=datastore1->addColumn("random data N(1,1)");
size_t randomdatacol3=datastore1->addColumn("random data N(6,2)");
std::random_device rd; // random number generators:
std::mt19937 gen{rd()};
std::uniform_int_distribution<> ddecide(0,1);
std::normal_distribution<> d1{1,1};
std::normal_distribution<> d2{6,2};
for (size_t i=0; i<50; i++) {
double v=0;
if (i%2==0) {
v=d1(gen);
datastore1->appendToColumn(randomdatacol2, v);
} else {
v=d2(gen);
datastore1->appendToColumn(randomdatacol3, v);
}
datastore1->appendToColumn(randomdatacol1, v);
}
Visualizing data as a Rug Plot
Samples from the bimodal (built from two gaussian distributions d1
and d2
) are collected in randomdatacol1
, whereas randomdatacol2
and randomdatacol3
collect those numbers that were drawn from d1
or d2
respectively.
Such data can be visualized by JKQTPSingleColumnSymbolsGraph
, here using a rug plot (using gData1->setPositionScatterStyle(JKQTPSingleColumnSymbolsGraph::RugPlot);
... but also e.g. a ee swarm plot would be possible):
JKQTPSingleColumnSymbolsGraph* gData1;
plot->addGraph(gData1=new JKQTPSingleColumnSymbolsGraph(plot));
gData1->setPosition(0);
gData1->setPositionScatterStyle(JKQTPSingleColumnSymbolsGraph::RugPlot);
gData1->setDataColumn(randomdatacol1);
gData1->setDataDirection(JKQTPSingleColumnSymbolsGraph::DataDirection::Y);
Drawing the (vertical) Violin Plot
Now we need to calculate the kernel density estimate from the data in randomdatacol1
and store the result in two new columns cViol1Cat
and cViol1Freq
:
size_t cViol1Cat=datastore1->addColumn("violin 1, cat");
size_t cViol1Freq=datastore1->addColumn("violin 1, KDE");
jkqtpstatKDE1DAutoranged(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1),
datastore1->backInserter(cViol1Cat), datastore1->backInserter(cViol1Freq),
51, jkqtpstatKernel1DEpanechnikov,
jkqtpstatEstimateKDEBandwidth(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
Finally we can add a JKQTPViolinplotVerticalElement
to the plot and provide it with the kernel density estimate from above and with some additional statistical properties (minimum, maximum, average and median) of the dataset:
JKQTPViolinplotVerticalElement* gViol1;
plot->addGraph(gViol1=new JKQTPViolinplotVerticalElement(plot));
gViol1->setPos(2);
gViol1->setMin(jkqtpstatMinimum(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
gViol1->setMax(jkqtpstatMaximum(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
gViol1->setMean(jkqtpstatAverage(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
gViol1->setMedian(jkqtpstatMedian(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
gViol1->setViolinPositionColumn(cViol1Cat);
gViol1->setViolinFrequencyColumn(cViol1Freq);
gViol1->setColor(gData1->getSymbolColor());
gViol1->setViolinStyle(JKQTPGraphViolinplotStyleMixin::SmoothViolin);
gViol1->setViolinPositionMode(JKQTPGraphViolinplotStyleMixin::ViolinBoth);
The center of the gData1
was set to 0 and the center of the violin plot is set to 2
. With JKQTPViolinplotVerticalElement::setViolinStyle()
you can choose the style of the violin plot and with JKQTPViolinplotVerticalElement::setViolinPositionMode()
you can select whether the density estimate should be displayed on the left, the right or on both sides of the center-line.
The result looks like this, if we use the same method as above to calculate also the violin plots for randomdatacol2
and randomdatacol3
:
Note that we set different styles for the three plots with:
gViol2->setViolinStyle(JKQTPGraphViolinplotStyleMixin::StepViolin); // green plot
gViol3->setViolinStyle(JKQTPGraphViolinplotStyleMixin::BoxViolin); // blue plot
Also for the green and blue plot, we did not calculate a kernel density estimate, but rather a simple histogram:
size_t cViol2Cat=datastore1->addColumn("violin 2, cat");
size_t cViol2Freq=datastore1->addColumn("violin 2, Histogram");
jkqtpstatHistogram1DAutoranged(datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2),
datastore1->backInserter(cViol2Cat), datastore1->backInserter(cViol2Freq),
21, true, false, JKQTPStatHistogramBinXMode::XIsMid);
Drawing a horizontal Violin Plot
Finally note that if you use JKQTPViolinplotHorizontalElement
instead of the JKQTPViolinplotVerticalElement
used above, you can also draw horizontal violin plots: