mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-13 01:10:33 +08:00
836 lines
24 KiB
C++
836 lines
24 KiB
C++
/*
|
|
Copyright (c) 2008-2022 Jan W. Krieger (<jan@jkrieger.de>)
|
|
|
|
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License (LGPL) as published by
|
|
the Free Software Foundation, either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License (LGPL) for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License (LGPL)
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
|
|
#include "jkqtplotter/graphs/jkqtpgeolines.h"
|
|
#include "jkqtplotter/jkqtpbaseplotter.h"
|
|
#include "jkqtplotter/jkqtplotter.h"
|
|
#include "jkqtcommon/jkqtpgeometrytools.h"
|
|
#include <stdlib.h>
|
|
#include <QDebug>
|
|
#include <QApplication>
|
|
#define SmallestGreaterZeroCompare_xvsgz() if ((xvsgz>10.0*DBL_MIN)&&((smallestGreaterZero<10.0*DBL_MIN) || (xvsgz<smallestGreaterZero))) smallestGreaterZero=xvsgz;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTBasePlotter *parent, double x1_, double y1_, double x2_, double y2_):
|
|
JKQTPGeoBaseDecoratedLine(parent), x1(x1_), y1(y1_), x2(x2_), y2(y2_)
|
|
{
|
|
setHeadDecoratorStyle(JKQTPNoDecorator);
|
|
setTailDecoratorStyle(JKQTPNoDecorator);
|
|
}
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTPlotter *parent, double x1, double y1, double x2, double y2):
|
|
JKQTPGeoLine(parent->getPlotter(), x1,y1,x2,y2)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTBasePlotter *parent, const QPointF &p1, const QPointF &p2):
|
|
JKQTPGeoLine(parent, p1.x(), p1.y(), p2.x(), p2.y())
|
|
{
|
|
|
|
}
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTPlotter *parent, const QPointF &p1, const QPointF &p2):
|
|
JKQTPGeoLine(parent, p1.x(), p1.y(), p2.x(), p2.y())
|
|
{
|
|
|
|
}
|
|
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTBasePlotter *parent, const QLineF &line):
|
|
JKQTPGeoLine(parent, line.x1(), line.y1(), line.x2(), line.y2())
|
|
{
|
|
|
|
}
|
|
|
|
JKQTPGeoLine::JKQTPGeoLine(JKQTPlotter *parent, const QLineF &line):
|
|
JKQTPGeoLine(parent, line.x1(), line.y1(), line.x2(), line.y2())
|
|
{
|
|
|
|
}
|
|
|
|
bool JKQTPGeoLine::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) {
|
|
minx=qMin(x1, x2);
|
|
maxx=qMax(x1, x2);
|
|
smallestGreaterZero=0;
|
|
double xvsgz;
|
|
xvsgz=x1; SmallestGreaterZeroCompare_xvsgz();
|
|
xvsgz=x2; SmallestGreaterZeroCompare_xvsgz();
|
|
return true;
|
|
}
|
|
|
|
bool JKQTPGeoLine::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) {
|
|
miny=qMin(y1, y2);
|
|
maxy=qMax(y1, y2);
|
|
smallestGreaterZero=0;
|
|
double xvsgz;
|
|
xvsgz=y1; SmallestGreaterZeroCompare_xvsgz();
|
|
xvsgz=y2; SmallestGreaterZeroCompare_xvsgz();
|
|
return true;
|
|
}
|
|
|
|
void JKQTPGeoLine::draw(JKQTPEnhancedPainter& painter) {
|
|
clearHitTestData();
|
|
reserveHitTestData(2);
|
|
painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();});
|
|
painter.setPen(getLinePen(painter, parent));
|
|
painter.setBrush(getLineColor());
|
|
QPointF xx1(transformX(x1),transformY(y1));
|
|
QPointF xx2(transformX(x2), transformY(y2));
|
|
if ( QLineF(xx1, xx2).length()>0) {
|
|
|
|
if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) {
|
|
// for linear axes, we can simply draw a line
|
|
const double angle1=atan2(xx2.y()-xx1.y(), xx2.x()-xx1.x());
|
|
const double angle2=atan2(xx1.y()-xx2.y(), xx1.x()-xx2.x());
|
|
QPointF lx1=xx1, lx2=xx2;
|
|
JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF()), &lx1);
|
|
JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()), &lx2);
|
|
// draw corrected line
|
|
painter.drawLine(QLineF(lx1, lx2));
|
|
} else {
|
|
QLineF line(QPointF(x1,y1), QPointF(x2,y2));
|
|
const double xmin=getXAxis()->getMin();
|
|
const double xmax=getXAxis()->getMax();
|
|
const double ymin=getYAxis()->getMin();
|
|
const double ymax=getYAxis()->getMax();
|
|
const QRectF bbox(QPointF(xmin, ymin), QPointF(xmax, ymax));
|
|
bool drawHead=bbox.contains(line.p2());
|
|
bool drawTail=bbox.contains(line.p1());
|
|
|
|
if (JKQTPClipLine(line, bbox)) {
|
|
|
|
// for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space)
|
|
// and transform each node to draw the corresponding non-linear curve in pixel-space!
|
|
auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1);
|
|
QVector<QPointF> points=JKQTPSplitLineIntoPoints(line, fTransform);
|
|
points=JKQTPSimplyfyLineSegemnts(points);
|
|
if (points.size()>1) {
|
|
xx1=points[0];
|
|
QPointF xx1p=points[1];
|
|
xx2=points[points.size()-1];
|
|
QPointF xx2p=points[points.size()-2];
|
|
//QPointF lx1=xx1, lx2=xx2;
|
|
const double angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x());
|
|
const double angle2=atan2(xx2p.y()-xx2.y(), xx2p.x()-xx2.x());
|
|
if (drawTail) JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF()));//, &lx1);
|
|
if (drawHead) JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()));//, &lx2);
|
|
//points[0]=lx1;
|
|
//points[points.size()-1]=lx2;
|
|
painter.drawPolylineFast(points.data(), points.size());
|
|
}
|
|
}
|
|
}
|
|
addHitTestData(x1, y1);
|
|
addHitTestData(x2, y2);
|
|
}
|
|
}
|
|
|
|
void JKQTPGeoLine::setX1(double __value)
|
|
{
|
|
this->x1 = __value;
|
|
}
|
|
|
|
double JKQTPGeoLine::getX1() const
|
|
{
|
|
return this->x1;
|
|
}
|
|
|
|
void JKQTPGeoLine::setY1(double __value)
|
|
{
|
|
this->y1 = __value;
|
|
}
|
|
|
|
double JKQTPGeoLine::getY1() const
|
|
{
|
|
return this->y1;
|
|
}
|
|
|
|
void JKQTPGeoLine::setX2(double __value)
|
|
{
|
|
this->x2 = __value;
|
|
}
|
|
|
|
double JKQTPGeoLine::getX2() const
|
|
{
|
|
return this->x2;
|
|
}
|
|
|
|
void JKQTPGeoLine::setY2(double __value)
|
|
{
|
|
this->y2 = __value;
|
|
}
|
|
|
|
double JKQTPGeoLine::getY2() const
|
|
{
|
|
return this->y2;
|
|
}
|
|
|
|
QPointF JKQTPGeoLine::getP1() const
|
|
{
|
|
return QPointF(x1,y1);
|
|
}
|
|
|
|
void JKQTPGeoLine::setP1(const QPointF &p)
|
|
{
|
|
x1=p.x();
|
|
y1=p.y();
|
|
}
|
|
|
|
QPointF JKQTPGeoLine::getP2() const
|
|
{
|
|
return QPointF(x2,y2);
|
|
}
|
|
|
|
void JKQTPGeoLine::setP2(const QPointF &p)
|
|
{
|
|
x2=p.x();
|
|
y2=p.y();
|
|
}
|
|
|
|
QLineF JKQTPGeoLine::getLine() const
|
|
{
|
|
return QLineF(getP1(), getP2());
|
|
}
|
|
|
|
void JKQTPGeoLine::setLine(const QLineF &line)
|
|
{
|
|
x1=line.p1().x();
|
|
x2=line.p2().x();
|
|
y1=line.p1().y();
|
|
y2=line.p2().y();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JKQTPGeoArrow::JKQTPGeoArrow(JKQTBasePlotter* parent, double x1, double y1, double x2, double y2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle):
|
|
JKQTPGeoLine(parent, x1,y1,x2,y2)
|
|
{
|
|
setHeadDecoratorStyle(headStyle);
|
|
setTailDecoratorStyle(tailStyle);
|
|
}
|
|
|
|
JKQTPGeoArrow::JKQTPGeoArrow(JKQTPlotter* parent, double x1, double y1, double x2, double y2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle):
|
|
JKQTPGeoArrow(parent->getPlotter(), x1,y1,x2,y2, headStyle, tailStyle)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
JKQTPGeoInfiniteLine::JKQTPGeoInfiniteLine(JKQTBasePlotter* parent, double x, double y, double dx, double dy):
|
|
JKQTPGeoBaseDecoratedHeadLine(parent)
|
|
{
|
|
this->x=x;
|
|
this->y=y;
|
|
this->dx=dx;
|
|
this->dy=dy;
|
|
this->two_sided=false;
|
|
}
|
|
|
|
JKQTPGeoInfiniteLine::JKQTPGeoInfiniteLine(JKQTPlotter* parent, double x, double y, double dx, double dy):
|
|
JKQTPGeoInfiniteLine(parent->getPlotter(), x, y, dx, dy)
|
|
{
|
|
}
|
|
|
|
bool JKQTPGeoInfiniteLine::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) {
|
|
minx=x;
|
|
maxx=x;
|
|
smallestGreaterZero=0;
|
|
if (x>10.0*DBL_MIN) smallestGreaterZero=x;
|
|
return true;
|
|
}
|
|
|
|
bool JKQTPGeoInfiniteLine::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) {
|
|
miny=y;
|
|
maxy=y;
|
|
smallestGreaterZero=0;
|
|
if (y>10.0*DBL_MIN) smallestGreaterZero=y;
|
|
return true;
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::draw(JKQTPEnhancedPainter& painter) {
|
|
clearHitTestData();
|
|
reserveHitTestData(2);
|
|
|
|
double xmin=getXAxis()->getMin();
|
|
double xmax=getXAxis()->getMax();
|
|
double ymin=getYAxis()->getMin();
|
|
double ymax=getYAxis()->getMax();
|
|
QRectF bbox(QPointF(xmin, ymin), QPointF(xmax, ymax));
|
|
bool doDraw=false;
|
|
double x2=x, y2=y;
|
|
double x1=x, y1=y;
|
|
|
|
// normalize lengh of direction
|
|
double dl=sqrt(dx*dx+dy*dy);
|
|
dx=dx/dl;
|
|
dy=dy/dl;
|
|
|
|
// first catch cases where we are parallel to one coordinate axis
|
|
if (dy==0) {
|
|
doDraw=((y>=ymin)&&(y<=ymax));
|
|
x1=xmin;
|
|
x2=xmax;
|
|
if (!two_sided) {
|
|
if ((dx>0)&&(x>xmin)) {
|
|
x1=x;
|
|
} else if ((dx<0)&&(x<xmax)) {
|
|
x2=x;
|
|
}
|
|
}
|
|
} else if (dx==0) {
|
|
doDraw=((x>=xmin)&&(x<=xmax));
|
|
y1=ymin;
|
|
y2=ymax;
|
|
if (!two_sided) {
|
|
if ((dy>0)&&(y>ymin)) {
|
|
y1=y;
|
|
} else if ((dy<0)&&(y<ymax)) {
|
|
y2=y;
|
|
}
|
|
}
|
|
} else {
|
|
// first we find intersection points of line and y=ymin, as well as y=ymax
|
|
double tymin=(ymin-y)/dy;
|
|
double xymin=x+tymin*dx;
|
|
double tymax=(ymax-y)/dy;
|
|
double xymax=x+tymax*dx;
|
|
double t1=0, t2=0;
|
|
if ((xymin>xmin)&&(xymin<xmax)) {
|
|
// (xymin,ymin) is on the rectangle circumference => use it
|
|
t1=tymin;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t1>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t1=0;
|
|
}
|
|
} else if (xymin<xmin) {
|
|
//(xymin,ymin) is on the left, next to the rectangle, so we have to intersect with x=xmin
|
|
t1=(xmin-x)/dx;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t1>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t1=0;
|
|
}
|
|
} else if (xymin>xmax) {
|
|
//(xymin,ymin) is on the right, next to the rectangle, so we have to intersect with x=xmax
|
|
t1=(xmax-x)/dx;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t1>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t1=0;
|
|
}
|
|
}
|
|
|
|
if ((xymax>xmin)&&(xymax<xmax)) {
|
|
// (xymax,ymin) is on the rectangle circumference => use it
|
|
t2=tymax;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t2>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t2=0;
|
|
}
|
|
} else if (xymax<xmin) {
|
|
//(xymax,ymax) is on the left, next to the rectangle, so we have to intersect with x=xmin
|
|
t2=(xmin-x)/dx;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t2>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t2=0;
|
|
}
|
|
} else if (xymax>xmax) {
|
|
//(xymax,ymax) is on the right, next to the rectangle, so we have to intersect with x=xmax
|
|
t2=(xmax-x)/dx;
|
|
if (two_sided) {
|
|
doDraw=true;
|
|
} else if (t2>0) {
|
|
doDraw=true;
|
|
} else {
|
|
t2=0;
|
|
}
|
|
}
|
|
|
|
x1=x+t1*dx;
|
|
y1=y+t1*dy;
|
|
x2=x+t2*dx;
|
|
y2=y+t2*dy;
|
|
}
|
|
|
|
if (doDraw) {
|
|
painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();});
|
|
painter.setPen(getLinePen(painter, parent));
|
|
QLineF line(QPointF(transformX(x1), transformY(y1)), QPointF(transformX(x2), transformY(y2)));
|
|
if (line.length()>0) {
|
|
QPointF xx1;
|
|
double angle1=0;
|
|
if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) {
|
|
painter.drawLine(line);
|
|
xx1=QPointF(transformX(x),transformY(y));
|
|
angle1=atan2(line.dy(), line.dx());
|
|
} else {
|
|
// for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space)
|
|
// and transform each node to draw the corresponding non-linear curve in pixel-space!
|
|
auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1);
|
|
QVector<QPointF> points=JKQTPSplitLineIntoPoints(QLineF(x1,y1,x2,y2), fTransform);
|
|
points=JKQTPSimplyfyLineSegemnts(points);
|
|
if (points.size()>1) {
|
|
xx1=points[0];
|
|
const QPointF xx1p=points[1];
|
|
angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x());
|
|
painter.drawPolylineFast(points.data(), points.size());
|
|
}
|
|
}
|
|
|
|
// draw line-end decorator
|
|
if (two_sided==false && x>=xmin && x<=xmax && y>=ymin && y<=ymax) {
|
|
painter.save(); auto __finalpainttwosided=JKQTPFinally([&painter]() {painter.restore();});
|
|
painter.setPen(getLinePen(painter, parent));
|
|
painter.setBrush(getLineColor());
|
|
JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()));
|
|
}
|
|
|
|
|
|
addHitTestData(x, y, formatHitTestDefaultLabel(x,y)+
|
|
QString(", \\ensuremath{\\mathrm{\\mathbf{d}}y/\\mathrm{\\mathbf{d}}x\\;=\\;%1/%2\\;=\\;%3\\;=\\;%4\\degree}").arg(jkqtp_floattolatexqstr(dy, 3)).arg(jkqtp_floattolatexqstr(dx, 3)).arg(jkqtp_floattolatexqstr(dy/dx, 3)).arg(jkqtp_floattolatexqstr(atan2(dy,dx), 1)));
|
|
addHitTestData(x1, y1);
|
|
addHitTestData(x2, y2);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setX(double __value)
|
|
{
|
|
this->x = __value;
|
|
}
|
|
|
|
double JKQTPGeoInfiniteLine::getX() const
|
|
{
|
|
return this->x;
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setY(double __value)
|
|
{
|
|
this->y = __value;
|
|
}
|
|
|
|
double JKQTPGeoInfiniteLine::getY() const
|
|
{
|
|
return this->y;
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setDx(double __value)
|
|
{
|
|
this->dx = __value;
|
|
}
|
|
|
|
double JKQTPGeoInfiniteLine::getDx() const
|
|
{
|
|
return this->dx;
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setDy(double __value)
|
|
{
|
|
this->dy = __value;
|
|
}
|
|
|
|
double JKQTPGeoInfiniteLine::getDy() const
|
|
{
|
|
return this->dy;
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setTwoSided(bool __value)
|
|
{
|
|
this->two_sided = __value;
|
|
}
|
|
|
|
bool JKQTPGeoInfiniteLine::getTwoSided() const
|
|
{
|
|
return this->two_sided;
|
|
}
|
|
|
|
QPointF JKQTPGeoInfiniteLine::getP() const
|
|
{
|
|
return QPointF(x,y);
|
|
}
|
|
|
|
void JKQTPGeoInfiniteLine::setP(const QPointF &p)
|
|
{
|
|
x=p.x();
|
|
y=p.y();
|
|
}
|
|
|
|
|
|
|
|
|
|
JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTBasePlotter* parent, const QVector<QPointF>& points):
|
|
JKQTPGeoBaseDecoratedLine(parent)
|
|
{
|
|
this->points=points;
|
|
}
|
|
|
|
JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTPlotter* parent, const QVector<QPointF>& points):
|
|
JKQTPGeoPolyLines(parent->getPlotter(), points)
|
|
{
|
|
}
|
|
|
|
JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTBasePlotter *parent):
|
|
JKQTPGeoBaseDecoratedLine(parent)
|
|
{
|
|
|
|
}
|
|
|
|
JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTPlotter *parent):
|
|
JKQTPGeoPolyLines(parent->getPlotter())
|
|
{
|
|
|
|
}
|
|
|
|
bool JKQTPGeoPolyLines::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) {
|
|
minx=0;
|
|
maxx=0;
|
|
smallestGreaterZero=0;
|
|
if (points.size()>0) {
|
|
minx=points[0].x();
|
|
maxx=points[0].x();
|
|
for (int i=1; i<points.size(); i++) {
|
|
double x=points[i].x();
|
|
if (x>maxx) maxx=x;
|
|
if (x<minx) minx=x;
|
|
double xvsgz;
|
|
xvsgz=x; SmallestGreaterZeroCompare_xvsgz();
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
//qDebug()<<"getXMinMax"<<minx<<maxx;
|
|
}
|
|
|
|
bool JKQTPGeoPolyLines::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) {
|
|
miny=0;
|
|
maxy=0;
|
|
smallestGreaterZero=0;
|
|
if (points.size()>0) {
|
|
miny=points[0].y();
|
|
maxy=points[0].y();
|
|
for (int i=1; i<points.size(); i++) {
|
|
double y=points[i].y();
|
|
if (y>maxy) maxy=y;
|
|
if (y<miny) miny=y;
|
|
double xvsgz;
|
|
xvsgz=y; SmallestGreaterZeroCompare_xvsgz();
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
//qDebug()<<"getYMinMax"<<miny<<maxy;
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::draw(JKQTPEnhancedPainter& painter) {
|
|
clearHitTestData();
|
|
if (points.size()>=2) {
|
|
reserveHitTestData(points.size());
|
|
|
|
double angle1, angle2;
|
|
QPointF xx1, xx2;
|
|
bool doDrawDecorator=false;
|
|
painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();});
|
|
painter.setPen(getLinePen(painter, parent));
|
|
painter.setBrush(getLineColor());
|
|
if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) {
|
|
QVector<QPointF> path=transform(points);
|
|
angle1=atan2(path[1].y()-path[0].y(), path[1].x()-path[0].x());
|
|
angle2=atan2(path[path.size()-2].y()-path[path.size()-1].y(), path[path.size()-2].x()-path[path.size()-1].x());
|
|
xx1=path[0];
|
|
xx2=path[path.size()-1];
|
|
// draw corrected line
|
|
painter.drawPolylineFast(path.data(), path.size());
|
|
doDrawDecorator=true;
|
|
} else {
|
|
// for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space)
|
|
// and transform each node to draw the corresponding non-linear curve in pixel-space!
|
|
auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1);
|
|
QVector<QPointF> points_poly=JKQTPSplitPolylineIntoPoints(points, fTransform);
|
|
points_poly=JKQTPSimplyfyLineSegemnts(points_poly);
|
|
if (points_poly.size()>1) {
|
|
xx1=points_poly[0];
|
|
const QPointF xx1p=points_poly[1];
|
|
angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x());
|
|
xx2=points_poly[points_poly.size()-1];
|
|
const QPointF xx2p=points_poly[points_poly.size()-2];
|
|
angle2=atan2(xx2p.y()-xx2.y(), xx2p.x()-xx2.x());
|
|
painter.drawPolylineFast(points_poly.data(), points_poly.size());
|
|
doDrawDecorator=true;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// potentially draw line-end decorators/arrows
|
|
if (doDrawDecorator) {
|
|
JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF()));
|
|
JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()));
|
|
}
|
|
|
|
|
|
for (const auto& p:points) {
|
|
addHitTestData(p.x(), p.y());
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::setPoints(const QVector<QPointF> &__value)
|
|
{
|
|
this->points = __value;
|
|
}
|
|
|
|
QVector<QPointF> JKQTPGeoPolyLines::getPoints() const
|
|
{
|
|
return this->points;
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::appendPoint(const QPointF &p) {
|
|
points.append(p);
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::appendPoint(const double x, const double y) {
|
|
points.append(QPointF(x, y));
|
|
}
|
|
|
|
int JKQTPGeoPolyLines::getPointCount() const
|
|
{
|
|
return points.size();
|
|
}
|
|
|
|
const QPointF &JKQTPGeoPolyLines::getPoint(int i) const
|
|
{
|
|
return points[i];
|
|
}
|
|
|
|
QPointF &JKQTPGeoPolyLines::getPoint(int i)
|
|
{
|
|
return points[i];
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::setPoint(int i, const QPointF &point)
|
|
{
|
|
points[i]=point;
|
|
}
|
|
|
|
void JKQTPGeoPolyLines::removePoint(int i)
|
|
{
|
|
points.remove(i);
|
|
}
|
|
|
|
QVector<QPointF>::iterator JKQTPGeoPolyLines::pointsBegin()
|
|
{
|
|
return points.begin();
|
|
}
|
|
|
|
QVector<QPointF>::iterator JKQTPGeoPolyLines::pointsEnd()
|
|
{
|
|
return points.end();
|
|
}
|
|
|
|
QVector<QPointF>::const_iterator JKQTPGeoPolyLines::pointsCBegin() const
|
|
{
|
|
return points.cbegin();
|
|
}
|
|
|
|
QVector<QPointF>::const_iterator JKQTPGeoPolyLines::pointsCEnd() const
|
|
{
|
|
return points.cend();
|
|
}
|
|
|
|
|
|
JKQTPGeoArc::JKQTPGeoArc(JKQTBasePlotter* parent, double x, double y, double width, double height, double angleStart, double angleStop):
|
|
JKQTPGeoBaseLine(parent)
|
|
{
|
|
this->angleStart=angleStart;
|
|
this->angleStop=angleStop;
|
|
this->x=x;
|
|
this->y=y;
|
|
this->width=width;
|
|
this->height=height;
|
|
this->angle=0;
|
|
}
|
|
|
|
JKQTPGeoArc::JKQTPGeoArc(JKQTPlotter* parent, double x, double y, double width, double height, double angleStart, double angleStop):
|
|
JKQTPGeoArc(parent->getPlotter(), x, y, width, height, angleStart, angleStop)
|
|
{
|
|
}
|
|
|
|
|
|
void JKQTPGeoArc::draw(JKQTPEnhancedPainter& painter) {
|
|
auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1);
|
|
const QPolygonF rect=JKQTPSplitEllipseIntoPoints(fTransform, x,y,width/2.0, height/2.0,angleStart,angleStop, angle);
|
|
|
|
painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();});
|
|
painter.setPen(getLinePen(painter, parent));
|
|
painter.drawPolylineFast(rect);
|
|
}
|
|
|
|
void JKQTPGeoArc::setAngleStart(double __value)
|
|
{
|
|
this->angleStart = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getAngleStart() const
|
|
{
|
|
return this->angleStart;
|
|
}
|
|
|
|
void JKQTPGeoArc::setAngleStop(double __value)
|
|
{
|
|
this->angleStop = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getAngleStop() const
|
|
{
|
|
return this->angleStop;
|
|
}
|
|
|
|
void JKQTPGeoArc::setX(double __value)
|
|
{
|
|
this->x = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getX() const
|
|
{
|
|
return this->x;
|
|
}
|
|
|
|
void JKQTPGeoArc::setY(double __value)
|
|
{
|
|
this->y = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getY() const
|
|
{
|
|
return this->y;
|
|
}
|
|
|
|
QPointF JKQTPGeoArc::getCenter() const
|
|
{
|
|
return QPointF(x, y);
|
|
}
|
|
|
|
void JKQTPGeoArc::setCenter(const QPointF ¢er)
|
|
{
|
|
x=center.x();
|
|
y=center.y();
|
|
}
|
|
void JKQTPGeoArc::setWidth(double __value)
|
|
{
|
|
this->width = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getWidth() const
|
|
{
|
|
return this->width;
|
|
}
|
|
|
|
void JKQTPGeoArc::setHeight(double __value)
|
|
{
|
|
this->height = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getHeight() const
|
|
{
|
|
return this->height;
|
|
}
|
|
|
|
QSizeF JKQTPGeoArc::getSize() const
|
|
{
|
|
return QSizeF(width,height);
|
|
}
|
|
|
|
void JKQTPGeoArc::setSize(const QSizeF &size)
|
|
{
|
|
width=size.width();
|
|
height=size.height();
|
|
}
|
|
void JKQTPGeoArc::setAngle(double __value)
|
|
{
|
|
this->angle = __value;
|
|
}
|
|
|
|
double JKQTPGeoArc::getAngle() const
|
|
{
|
|
return this->angle;
|
|
}
|
|
|
|
|
|
bool JKQTPGeoArc::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) {
|
|
QPolygonF rect;
|
|
rect=QPolygonF(JKQTPSplitEllipseIntoPoints(x,y,width/2.0, height/2.0,angleStart,angleStop,angle, 180));
|
|
minx=rect.boundingRect().left();
|
|
maxx=rect.boundingRect().right();
|
|
if (minx>maxx) std::swap(minx, maxx);
|
|
smallestGreaterZero=0;
|
|
double xvsgz;
|
|
xvsgz=minx; SmallestGreaterZeroCompare_xvsgz();
|
|
xvsgz=maxx; SmallestGreaterZeroCompare_xvsgz();
|
|
return true;
|
|
}
|
|
|
|
bool JKQTPGeoArc::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) {
|
|
QPolygonF rect;
|
|
rect=QPolygonF(JKQTPSplitEllipseIntoPoints(x,y,width/2.0, height/2.0,angleStart,angleStop,angle, 180));
|
|
miny=rect.boundingRect().bottom();
|
|
maxy=rect.boundingRect().top();
|
|
if (miny>maxy) std::swap(miny, maxy);
|
|
smallestGreaterZero=0;
|
|
double xvsgz;
|
|
xvsgz=miny; SmallestGreaterZeroCompare_xvsgz();
|
|
xvsgz=maxy; SmallestGreaterZeroCompare_xvsgz();
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|