mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-12-25 18:11:38 +08:00
34b31812ba
+ CMAKE now properly adds the Build-type when building libraries + removed some more compiler warning
633 lines
34 KiB
C++
633 lines
34 KiB
C++
/*
|
|
Copyright (c) 2008-2019 Jan W. Krieger (<jan@jkrieger.de>)
|
|
|
|
last modification: $LastChangedDate$ (revision $Rev$)
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License (LGPL) as published by
|
|
the Free Software Foundation, either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License (LGPL) for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License (LGPL)
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef JKQTPSTATREGRESSION_H_INCLUDED
|
|
#define JKQTPSTATREGRESSION_H_INCLUDED
|
|
|
|
#include <stdint.h>
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <cfloat>
|
|
#include <ostream>
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include "jkqtcommon/jkqtcommon_imexport.h"
|
|
#include "jkqtcommon/jkqtplinalgtools.h"
|
|
#include "jkqtcommon/jkqtparraytools.h"
|
|
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
|
#include "jkqtcommon/jkqtpstatbasics.h"
|
|
#include "jkqtcommon/jkqtpstatpoly.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! \brief calculate the linear regression coefficients for a given data range \a firstX / \a firstY ... \a lastX / \a lastY where the model is \f$ f(x)=a+b\cdot x \f$
|
|
So this function solves the least-squares optimization problem: \f[ (a^\ast, b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i\left(y_i-(a+b\cdot x_i)\right)^2 \f]
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
|
|
This function computes internally:
|
|
\f[ a=\overline{y}-b\cdot\overline{x} \f]
|
|
\f[ b=\frac{\sum x_iy_i-N\cdot\overline{x}\cdot\overline{y}}{\sum x_i^2-N\cdot(\overline{x})^2} \f]
|
|
|
|
\image html datastore_regression_lin.png
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline void jkqtpstatLinearRegression(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false) {
|
|
if (fixA&&fixB) return;
|
|
const int Nx=std::distance(firstX,lastX);
|
|
const int Ny=std::distance(firstY,lastY);
|
|
|
|
JKQTPASSERT(Nx>1 && Ny>1);
|
|
|
|
double sumx=0, sumy=0, sumxy=0, sumx2=0;
|
|
size_t N=0;
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
for (; itX!=lastX && itY!=lastY; ++itX, ++itY) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y)) {
|
|
sumx=sumx+fit_x;
|
|
sumy=sumy+fit_y;
|
|
sumxy=sumxy+fit_x*fit_y;
|
|
sumx2=sumx2+fit_x*fit_x;
|
|
N++;
|
|
}
|
|
}
|
|
const double NN=static_cast<double>(N);
|
|
JKQTPASSERT_M(NN>1, "too few datapoints");
|
|
if (!fixA && !fixB) {
|
|
coeffB=(double(sumxy)-double(sumx)*double(sumy)/NN)/(double(sumx2)-double(sumx)*double(sumx)/NN);;
|
|
coeffA=double(sumy)/NN-coeffB*double(sumx)/NN;
|
|
} else if (fixA && !fixB) {
|
|
coeffB=(double(sumy)/NN-coeffA)/(double(sumx)/NN);
|
|
} else if (!fixA && fixB) {
|
|
coeffA=double(sumy)/NN-coeffB*double(sumx)/NN;
|
|
}
|
|
}
|
|
|
|
|
|
/*! \brief calculate the weighted linear regression coefficients for a given for a given data range \a firstX / \a firstY / \a firstW ... \a lastX / \a lastY / \a lastW where the model is \f$ f(x)=a+b\cdot x \f$
|
|
So this function solves the least-squares optimization problem: \f[ (a^\ast, b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_iw_i^2\cdot\left(y_i-(a+b\cdot x_i)\right)^2 \f]
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\tparam InputItW standard iterator type of \a firstW and \a lastW.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param firstW iterator pointing to the first item in the weight-dataset to use \f$ w_1 \f$
|
|
\param lastW iterator pointing behind the last item in the weight-dataset to use \f$ w_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
\param fWeightDataToWi an optional function, which is applied to the data from \a firstW ... \a lastW to convert them to weight, i.e. \c wi=fWeightDataToWi(*itW)
|
|
e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values.
|
|
In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight
|
|
is directly proportional to the given value.
|
|
|
|
|
|
This function internally computes:
|
|
\f[ a=\frac{\overline{y}-b\cdot\overline{x}}{\overline{w^2}} \f]
|
|
\f[ b=\frac{\overline{w^2}\cdot\overline{x\cdot y}-\overline{x}\cdot\overline{y}}{\overline{x^2}\cdot\overline{w^2}-\overline{x}^2} \f]
|
|
|
|
Here the averages are defined in terms of a weight vector \f$ w_i\f$:
|
|
\f[ \overline{x}=\sum\limits_iw_i^2\cdot x_i \f]
|
|
\f[ \overline{y}=\sum\limits_iw_i^2\cdot y_i \f]
|
|
\f[ \overline{x\cdot y}=\sum\limits_iw_i^2\cdot x_i\cdot y_i \f]
|
|
\f[ \overline{x^2}=\sum\limits_iw_i^2\cdot x_i^2 \f]
|
|
\f[ \overline{w^2}=\sum\limits_iw_i^2 \f]
|
|
|
|
\image html datastore_regression_linweight.png
|
|
|
|
*/
|
|
template <class InputItX, class InputItY, class InputItW>
|
|
inline void jkqtpstatLinearWeightedRegression(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false, std::function<double(double)> fWeightDataToWi=&jkqtp_identity<double>) {
|
|
if (fixA&&fixB) return;
|
|
const int Nx=std::distance(firstX,lastX);
|
|
const int Ny=std::distance(firstY,lastY);
|
|
const int Nw=std::distance(firstW,lastW);
|
|
|
|
JKQTPASSERT(Nx>1 && Ny>1 && Nw>1);
|
|
|
|
double sumx=0, sumy=0, sumxy=0, sumx2=0, sumw2=0;
|
|
size_t N=0;
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
auto itW=firstW;
|
|
for (; itX!=lastX && itY!=lastY && itW!=lastW; ++itX, ++itY, ++itW) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
const double fit_w2=jkqtp_sqr(fWeightDataToWi(jkqtp_todouble(*itW)));
|
|
if (JKQTPIsOKFloat(fit_x)&&JKQTPIsOKFloat(fit_y)&&JKQTPIsOKFloat(fit_w2)) {
|
|
sumx=sumx+fit_w2*fit_x;
|
|
sumy=sumy+fit_w2*fit_y;
|
|
sumxy=sumxy+fit_w2*fit_x*fit_y;
|
|
sumx2=sumx2+fit_w2*fit_x*fit_x;
|
|
sumw2=sumw2+fit_w2;
|
|
N++;
|
|
}
|
|
}
|
|
const double NN=static_cast<double>(N);
|
|
JKQTPASSERT_M(NN>1, "too few datapoints");
|
|
if (!fixA && !fixB) {
|
|
coeffB=(double(sumxy)*double(sumw2)-double(sumx)*double(sumy))/(double(sumx2)*double(sumw2)-double(sumx)*double(sumx));
|
|
coeffA=(double(sumy)-coeffB*double(sumx))/double(sumw2);
|
|
} else if (fixA && !fixB) {
|
|
coeffB=(double(sumy)-coeffA*double(sumw2))/double(sumx);
|
|
} else if (!fixA && fixB) {
|
|
coeffA=(double(sumy)-coeffB*double(sumx))/double(sumw2);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*! \brief calculate the (robust) iteratively reweighted least-squares (IRLS) estimate for the parameters of the model \f$ f(x)=a+b\cdot x \f$
|
|
for a given data range \a firstX / \a firstY ... \a lastX / \a lastY
|
|
So this function finds an outlier-robust solution to the optimization problem:
|
|
\f[ (a^\ast,b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i|a+b\cdot x_i-y_i|^p \f]
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
\param p regularization parameter, the optimization problem is formulated in the \f$ L_p \f$ norm, using this \a p (see image below for an example)
|
|
\param iterations the number of iterations the IRLS algorithm performs
|
|
|
|
This is a simple form of the IRLS algorithm to estimate the parameters a and b in a linear model \f$ f(x)=a+b\cdot x \f$.
|
|
This algorithm solves the optimization problem for a \f$ L_p\f$-norm:
|
|
\f[ (a^\ast,b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i|a+b\cdot x_i-y_i|^p \f]
|
|
by iteratively optimization weights \f$ \vec{w} \f$ and solving a weighted least squares problem in each iteration:
|
|
\f[ (a_n,b_n)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i|a+b\cdot x_i-y_i|^{(p-2)}\cdot|a+b\cdot x_i-y_i|^2 \f]
|
|
|
|
|
|
The IRLS-algorithm works as follows:
|
|
- calculate initial \f$ a_0\f$ and \f$ b_0\f$ with unweighted regression from x and y
|
|
- perform a number of iterations (parameter \a iterations ). In each iteration \f$ n\f$:
|
|
- calculate the error vector \f$\vec{e}\f$: \f[ e_i = a+b\cdot x_i -y_i \f]
|
|
- estimate new weights \f$\vec{w}\f$: \f[ w_i=|e_i|^{(p-2)/2} \f]
|
|
- calculate new estimates \f$ a_n\f$ and \f$ b_n\f$ with weighted regression from \f$ \vec{x}\f$ and \f$ \vec{y}\f$ and \f$ \vec{w}\f$
|
|
.
|
|
- return the last estimates \f$ a_n\f$ and \f$ b_n\f$
|
|
.
|
|
|
|
\image html irls.png
|
|
|
|
\image html datastore_regression_linrobust_p.png
|
|
|
|
\see https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares, C. Sidney Burrus: "Iterative Reweighted Least Squares", <a href="http://cnx.org/content/m45285/latest/">http://cnx.org/content/m45285/latest/</a>
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline void jkqtpstatRobustIRLSLinearRegression(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100) {
|
|
if (fixA&&fixB) return;
|
|
const int Nx=std::distance(firstX,lastX);
|
|
const int Ny=std::distance(firstY,lastY);
|
|
const int N=std::min(Nx,Ny);
|
|
|
|
JKQTPASSERT(Nx>1 && Ny>1);
|
|
|
|
std::vector<double> weights;
|
|
std::fill_n(std::back_inserter(weights), N, 1.0);
|
|
|
|
double alast=coeffA, blast=coeffB;
|
|
jkqtpstatLinearWeightedRegression(firstX, lastX, firstY, lastY, weights.begin(), weights.end(), alast, blast, fixA, fixB, &jkqtp_identity<double>);
|
|
for (int it=0; it<iterations-1; it++) {
|
|
// calculate weights
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
for (double& w: weights) {
|
|
const double fit_x=*itX;
|
|
const double fit_y=*itY;
|
|
const double e=alast+blast*fit_x-fit_y;
|
|
w=pow(std::max<double>(JKQTP_EPSILON*100.0, fabs(e)), (p-2.0)/2.0);
|
|
++itX;
|
|
++itY;
|
|
}
|
|
// solve weighted linear least squares
|
|
jkqtpstatLinearWeightedRegression(firstX, lastX, firstY, lastY, weights.begin(), weights.end(), alast, blast, fixA, fixB, &jkqtp_identity<double>);
|
|
}
|
|
coeffA=alast;
|
|
coeffB=blast;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! \brief when performing linear regression, different target functions can be fitted, if the input data is transformed accordingly. This library provides the options in this enum by default.
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
*/
|
|
enum class JKQTPStatRegressionModelType {
|
|
Linear, /*!< \brief linear model \f$ f(x)=a+b\cdot x \f$ */
|
|
PowerLaw, /*!< \brief power law model \f$ f(x)=a\cdot x^b \f$ */
|
|
Exponential, /*!< \brief exponential model \f$ f(x)=a\cdot \exp(b\cdot x) \f$ */
|
|
Logarithm, /*!< \brief exponential model \f$ f(x)=a+b\cdot \ln(x) \f$ */
|
|
};
|
|
|
|
|
|
/*! \brief Generates functors \c f(x,a,b) for the models from JKQTPStatRegressionModelType in \a type
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT std::function<double(double, double, double)> jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType type);
|
|
|
|
/*! \brief Generates a LaTeX string for the models from JKQTPStatRegressionModelType in \a type
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT QString jkqtpstatRegressionModel2Latex(JKQTPStatRegressionModelType type, double a, double b);
|
|
|
|
/*! \brief Generates functors \c f(x) for the models from JKQTPStatRegressionModelType in \a type and binds the parameter values \a and \a b to the returned function
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT std::function<double(double)> jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType type, double a, double b);
|
|
|
|
/*! \brief Generates the transformation function for x-data (\c result.first ) and y-data (\c result.second ) for each regression model in JKQTPStatRegressionModelType in \a type
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
\internal
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT std::pair<std::function<double(double)>,std::function<double(double)> > jkqtpStatGenerateTransformation(JKQTPStatRegressionModelType type);
|
|
|
|
|
|
/*! \brief Generates the transformation function for a-parameter (offset, \c result.first : transform, \c result.second : back-transform) for each regression model in JKQTPStatRegressionModelType in \a type
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
\internal
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT std::pair<std::function<double(double)>,std::function<double(double)> > jkqtpStatGenerateParameterATransformation(JKQTPStatRegressionModelType type);
|
|
|
|
|
|
/*! \brief Generates the transformation function for b-parameter (slope, \c result.first : transform, \c result.second : back-transform) for each regression model in JKQTPStatRegressionModelType in \a type
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
\internal
|
|
*/
|
|
JKQTCOMMON_LIB_EXPORT std::pair<std::function<double(double)>,std::function<double(double)> > jkqtpStatGenerateParameterBTransformation(JKQTPStatRegressionModelType type);
|
|
|
|
|
|
/*! \brief calculate the linear regression coefficients for a given data range \a firstX / \a firstY ... \a lastX / \a lastY where the model is defined by \a type
|
|
So this function solves the least-squares optimization problem: \f[ (a^\ast, b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i\left(y_i-f_{\text{type}}(x_i,a,b)\right)^2 \f]
|
|
by reducing it to a linear fit by transforming x- and/or y-data
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param type model to be fitted
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
|
|
This function computes internally first transforms the data, as appropriate to fit the model defined by \a type and then calls jkqtpstatLinearRegression()
|
|
to obtain the parameters. The output parameters are transformed, so they can be used with jkqtpStatGenerateRegressionModel() to generate a functor
|
|
that evaluates the model
|
|
|
|
\see JKQTPStatRegressionModelType, jkqtpStatGenerateRegressionModel(), jkqtpstatLinearRegression(), jkqtpStatGenerateTransformation()
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline void jkqtpstatRegression(JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false) {
|
|
std::vector<double> x, y;
|
|
auto trafo=jkqtpStatGenerateTransformation(type);
|
|
auto aTrafo =jkqtpStatGenerateParameterATransformation(type);
|
|
auto bTrafo =jkqtpStatGenerateParameterBTransformation(type);
|
|
|
|
std::transform(firstX, lastX, std::back_inserter(x), trafo.first);
|
|
std::transform(firstY, lastY, std::back_inserter(y), trafo.second);
|
|
|
|
double a=aTrafo.first(coeffA);
|
|
double b=bTrafo.first(coeffB);
|
|
|
|
jkqtpstatLinearRegression(x.begin(), x.end(), y.begin(), y.end(), a, b, fixA, fixB);
|
|
|
|
coeffA=aTrafo.second(a);
|
|
coeffB=bTrafo.second(b);
|
|
}
|
|
|
|
|
|
|
|
/*! \brief calculate the robust linear regression coefficients for a given data range \a firstX / \a firstY ... \a lastX / \a lastY where the model is defined by \a type
|
|
So this function solves the Lp-norm optimization problem: \f[ (a^\ast, b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_i|y_i-f_{\text{type}}(x_i,a,b)|^p \f]
|
|
by reducing it to a linear fit by transforming x- and/or y-data
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param type model to be fitted
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
\param p regularization parameter, the optimization problem is formulated in the \f$ L_p \f$ norm, using this \a p (see image below for an example)
|
|
\param iterations the number of iterations the IRLS algorithm performs
|
|
|
|
This function computes internally first transforms the data, as appropriate to fit the model defined by \a type and then calls jkqtpstatRobustIRLSLinearRegression()
|
|
to obtain the parameters. The output parameters are transformed, so they can be used with jkqtpStatGenerateRegressionModel() to generate a functor
|
|
that evaluates the model
|
|
|
|
\see JKQTPStatRegressionModelType, jkqtpStatGenerateRegressionModel(), jkqtpstatRobustIRLSLinearRegression(), jkqtpStatGenerateTransformation()
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline void jkqtpstatRobustIRLSRegression(JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false, double p=1.1, int iterations=100) {
|
|
std::vector<double> x, y;
|
|
auto trafo=jkqtpStatGenerateTransformation(type);
|
|
auto aTrafo =jkqtpStatGenerateParameterATransformation(type);
|
|
auto bTrafo =jkqtpStatGenerateParameterBTransformation(type);
|
|
|
|
std::transform(firstX, lastX, std::back_inserter(x), trafo.first);
|
|
std::transform(firstY, lastY, std::back_inserter(y), trafo.second);
|
|
|
|
double a=aTrafo.first(coeffA);
|
|
double b=bTrafo.first(coeffB);
|
|
|
|
jkqtpstatRobustIRLSLinearRegression(x.begin(), x.end(), y.begin(), y.end(), a, b, fixA, fixB, p, iterations);
|
|
|
|
coeffA=aTrafo.second(a);
|
|
coeffB=bTrafo.second(b);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*! \brief calculate the robust linear regression coefficients for a given data range \a firstX / \a firstY ... \a lastX / \a lastY where the model is defined by \a type
|
|
So this function solves the Lp-norm optimization problem: \f[ (a^\ast, b^\ast)=\mathop{\mathrm{arg\;min}}\limits_{a,b}\sum\limits_iw_i^2\left(y_i-f_{\text{type}}(x_i,a,b)\right)^2 \f]
|
|
by reducing it to a linear fit by transforming x- and/or y-data
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\tparam InputItW standard iterator type of \a firstW and \a lastW.
|
|
\param type model to be fitted
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param firstW iterator pointing to the first item in the weight-dataset to use \f$ w_1 \f$
|
|
\param lastW iterator pointing behind the last item in the weight-dataset to use \f$ w_N \f$
|
|
\param[in,out] coeffA returns the offset of the linear model
|
|
\param[in,out] coeffB returns the slope of the linear model
|
|
\param fixA if \c true, the offset coefficient \f$ a \f$ is not determined by the fit, but the value provided in \a coeffA is used
|
|
\param fixB if \c true, the slope coefficient \f$ b \f$ is not determined by the fit, but the value provided in \a coeffB is used
|
|
\param fWeightDataToWi an optional function, which is applied to the data from \a firstW ... \a lastW to convert them to weight, i.e. \c wi=fWeightDataToWi(*itW)
|
|
e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values.
|
|
In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight
|
|
is directly proportional to the given value.
|
|
|
|
This function computes internally first transforms the data, as appropriate to fit the model defined by \a type and then calls jkqtpstatLinearWeightedRegression()
|
|
to obtain the parameters. The output parameters are transformed, so they can be used with jkqtpStatGenerateRegressionModel() to generate a functor
|
|
that evaluates the model
|
|
|
|
\see JKQTPStatRegressionModelType, jkqtpStatGenerateRegressionModel(), jkqtpstatLinearWeightedRegression(), jkqtpStatGenerateTransformation()
|
|
*/
|
|
template <class InputItX, class InputItY, class InputItW>
|
|
inline void jkqtpstatWeightedRegression(JKQTPStatRegressionModelType type, InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, double& coeffA, double& coeffB, bool fixA=false, bool fixB=false, std::function<double(double)> fWeightDataToWi=&jkqtp_identity<double>) {
|
|
std::vector<double> x, y;
|
|
auto trafo=jkqtpStatGenerateTransformation(type);
|
|
auto aTrafo =jkqtpStatGenerateParameterATransformation(type);
|
|
auto bTrafo =jkqtpStatGenerateParameterBTransformation(type);
|
|
|
|
std::transform(firstX, lastX, std::back_inserter(x), trafo.first);
|
|
std::transform(firstY, lastY, std::back_inserter(y), trafo.second);
|
|
|
|
double a=aTrafo.first(coeffA);
|
|
double b=bTrafo.first(coeffB);
|
|
|
|
jkqtpstatLinearWeightedRegression(x.begin(), x.end(), y.begin(), y.end(), firstW, lastW, a, b, fixA, fixB, fWeightDataToWi);
|
|
|
|
coeffA=aTrafo.second(a);
|
|
coeffB=bTrafo.second(b);
|
|
}
|
|
|
|
|
|
|
|
|
|
/*! \brief calculates the coefficient of determination \f$ R^2 \f$ for a set of measurements \f$ (x_i,y_i) \f$ with a fit function \f$ f(x) \f$
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param f function \f$ f(x) \f$, result of a fit to the data
|
|
\return coeffcicient of determination \f[ R^2=1-\frac{\sum_i\bigl[y_i-f(x_i)\bigr]^2}{\sum_i\bigl[y_i-\overline{y}\bigr]^2} \f] where \f[ \overline{y}=\frac{1}{N}\cdot\sum_iy_i \f]
|
|
|
|
|
|
|
|
\see https://en.wikipedia.org/wiki/Coefficient_of_determination
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline double jkqtpstatCoefficientOfDetermination(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, std::function<double(double)> f) {
|
|
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
|
|
const double yMean=jkqtpstatAverage(firstX,lastX);
|
|
double SSres=0;
|
|
double SStot=0;
|
|
for (; itX!=lastX && itY!=lastY; ++itX, ++itY) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y)) {
|
|
SStot+=jkqtp_sqr(fit_y-yMean);
|
|
SSres+=jkqtp_sqr(fit_y-f(fit_x));
|
|
}
|
|
}
|
|
|
|
return 1.0-SSres/SStot;
|
|
}
|
|
|
|
|
|
/*! \brief calculates the weightedcoefficient of determination \f$ R^2 \f$ for a set of measurements \f$ (x_i,y_i,w_i) \f$ with a fit function \f$ f(x) \f$
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\tparam InputItW standard iterator type of \a firstW and \a lastW.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param firstW iterator pointing to the first item in the weight-dataset to use \f$ w_1 \f$
|
|
\param lastW iterator pointing behind the last item in the weight-dataset to use \f$ w_N \f$
|
|
\param f function \f$ f(x) \f$, result of a fit to the data
|
|
\param fWeightDataToWi an optional function, which is applied to the data from \a firstW ... \a lastW to convert them to weight, i.e. \c wi=fWeightDataToWi(*itW)
|
|
e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values.
|
|
In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight
|
|
is directly proportional to the given value.
|
|
\return weighted coeffcicient of determination \f[ R^2=1-\frac{\sum_iw_i^2\bigl[y_i-f(x_i)\bigr]^2}{\sum_iw_i^2\bigl[y_i-\overline{y}\bigr]^2} \f] where \f[ \overline{y}=\frac{1}{N}\cdot\sum_iw_iy_i \f]
|
|
with \f[ \sum_iw_i=1 \f]
|
|
|
|
|
|
|
|
\see https://en.wikipedia.org/wiki/Coefficient_of_determination
|
|
*/
|
|
template <class InputItX, class InputItY, class InputItW>
|
|
inline double jkqtpstatWeightedCoefficientOfDetermination(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, std::function<double(double)> f, std::function<double(double)> fWeightDataToWi=&jkqtp_identity<double>) {
|
|
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
auto itW=firstW;
|
|
|
|
const double yMean=jkqtpstatWeightedAverage(firstX,lastX,firstW);
|
|
double SSres=0;
|
|
double SStot=0;
|
|
for (; itX!=lastX && itY!=lastY && itW!=lastW; ++itX, ++itY, ++itW) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
const double fit_w2=jkqtp_sqr(fWeightDataToWi(jkqtp_todouble(*itW)));
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y) && JKQTPIsOKFloat(fit_w2)) {
|
|
SSres+=(fit_w2*jkqtp_sqr(fit_y-f(fit_x)));
|
|
SStot+=(fit_w2*jkqtp_sqr(fit_y-yMean));
|
|
}
|
|
}
|
|
|
|
return 1.0-SSres/SStot;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*! \brief calculates the sum of deviations \f$ \chi^2 \f$ for a set of measurements \f$ (x_i,y_i) \f$ with a fit function \f$ f(x) \f$
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param f function \f$ f(x) \f$, result of a fit to the data
|
|
\return sum of deviations \f[ \chi^2=\sum_i\bigl[y_i-f(x_i)\bigr]^2 \f]
|
|
|
|
|
|
|
|
\see https://en.wikipedia.org/wiki/Coefficient_of_determination
|
|
*/
|
|
template <class InputItX, class InputItY>
|
|
inline double jkqtpstatSumOfDeviations(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, std::function<double(double)> f) {
|
|
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
|
|
double SSres=0;
|
|
for (; itX!=lastX && itY!=lastY; ++itX, ++itY) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y)) {
|
|
SSres+=jkqtp_sqr(fit_y-f(fit_x));
|
|
}
|
|
}
|
|
|
|
return SSres;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*! \brief calculates the weighted sum of deviations \f$ \chi^2 \f$ for a set of measurements \f$ (x_i,y_i,w_i) \f$ with a fit function \f$ f(x) \f$
|
|
\ingroup jkqtptools_math_statistics_regression
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\tparam InputItW standard iterator type of \a firstW and \a lastW.
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param firstW iterator pointing to the first item in the weight-dataset to use \f$ w_1 \f$
|
|
\param lastW iterator pointing behind the last item in the weight-dataset to use \f$ w_N \f$
|
|
\param f function \f$ f(x) \f$, result of a fit to the data
|
|
\param fWeightDataToWi an optional function, which is applied to the data from \a firstW ... \a lastW to convert them to weight, i.e. \c wi=fWeightDataToWi(*itW)
|
|
e.g. if you use data used to draw error bars, you can use jkqtp_inversePropSaveDefault(). The default is jkqtp_identity(), which just returns the values.
|
|
In the case of jkqtp_inversePropSaveDefault(), a datapoint x,y, has a large weight, if it's error is small and in the case if jkqtp_identity() it's weight
|
|
is directly proportional to the given value.
|
|
\return weighted sum of deviations \f[ \chi^2=\sum_iw_i^2\cdot\bigl[y_i-f(x_i)\bigr]^2 \f]
|
|
|
|
|
|
\see https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
|
|
*/
|
|
template <class InputItX, class InputItY, class InputItW>
|
|
inline double jkqtpstatWeightedSumOfDeviations(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, InputItW firstW, InputItW lastW, std::function<double(double)> f, std::function<double(double)> fWeightDataToWi=&jkqtp_identity<double>) {
|
|
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
auto itW=firstW;
|
|
|
|
double SSres=0;
|
|
for (; itX!=lastX && itY!=lastY && itW!=lastW; ++itX, ++itY, ++itW) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
const double fit_w2=jkqtp_sqr(fWeightDataToWi(jkqtp_todouble(*itW)));
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y) && JKQTPIsOKFloat(fit_w2)) {
|
|
SSres+=fit_w2*jkqtp_sqr(fit_y-f(fit_x));
|
|
}
|
|
}
|
|
|
|
return SSres;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // JKQTPSTATREGRESSION_H_INCLUDED
|
|
|
|
|