mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-12 00:40:32 +08:00
92 lines
3.2 KiB
C++
92 lines
3.2 KiB
C++
/** \example rgbimageplot_cimg.cpp
|
|
* Simple math image plot, showin a 3-channel CImg image
|
|
*
|
|
* \ref JKQTPlotterImagePlotRGBCImg
|
|
*/
|
|
#define cimg_display 0
|
|
#include <QApplication>
|
|
#include <cmath>
|
|
#include "jkqtplotter/jkqtplotter.h"
|
|
#include "jkqtplotter/graphs/jkqtpscatter.h"
|
|
#include "jkqtplotter/graphs/jkqtpimagergb.h"
|
|
#include "jkqtplotter/jkqtpinterfacecimg.h"
|
|
#include "CImg.h"
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
QApplication app(argc, argv);
|
|
|
|
JKQTPlotter plot;
|
|
|
|
|
|
// 1. create a plotter window and get a pointer to the internal datastore (for convenience)
|
|
plot.getPlotter()->setUseAntiAliasingForGraphs(true); // nicer (but slower) plotting
|
|
plot.getPlotter()->setUseAntiAliasingForSystem(true); // nicer (but slower) plotting
|
|
plot.getPlotter()->setUseAntiAliasingForText(true); // nicer (but slower) text rendering
|
|
JKQTPDatastore* ds=plot.getDatastore();
|
|
|
|
|
|
// 2. now we open a BMP-file and load it into an OpenCV cv::Mat
|
|
cimg_library::CImg<uint8_t> picture; // CImg<T>-Image for the data
|
|
picture.load_bmp("rgbimageplot_opencv_example.bmp");
|
|
qDebug()<<picture.width()<<"x"<<picture.height()<<"x"<<picture.spectrum();
|
|
|
|
|
|
|
|
// 3. make data available to JKQTPlotter by adding it to the internal datastore.
|
|
// In this step the contents of each channel of the openCV cv::Mat is copied into a column
|
|
// of the datastore in row-major order
|
|
size_t cPictureR=JKQTPCopyCImgToColumn(ds, picture, "R-channel", 0);
|
|
size_t cPictureG=JKQTPCopyCImgToColumn(ds, picture, "G-channel", 1);
|
|
size_t cPictureB=JKQTPCopyCImgToColumn(ds, picture, "B-channel", 2);
|
|
|
|
|
|
// 4. create a graph (JKQTPColumnRGBMathImage) with the columns created above as data
|
|
JKQTPColumnRGBMathImage* graph=new JKQTPColumnRGBMathImage(&plot);
|
|
graph->setTitle("");
|
|
// where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner)
|
|
graph->setX(0);
|
|
graph->setY(0);
|
|
// width and height of the image in plot-axis-coordinates
|
|
graph->setWidth(picture.width());
|
|
graph->setHeight(picture.height());
|
|
// image column with the data
|
|
graph->setImageRColumn(static_cast<int>(cPictureR));
|
|
graph->setImageGColumn(static_cast<int>(cPictureG));
|
|
graph->setImageBColumn(static_cast<int>(cPictureB));
|
|
// determine min/max of each channel manually
|
|
graph->setImageMinR(0);
|
|
graph->setImageMaxR(255);
|
|
graph->setImageMinG(0);
|
|
graph->setImageMaxG(255);
|
|
graph->setImageMinB(0);
|
|
graph->setImageMaxB(255);
|
|
|
|
|
|
|
|
// 5. add the graphs to the plot, so it is actually displayed
|
|
plot.addGraph(graph);
|
|
|
|
// 6. set axis labels
|
|
plot.getXAxis()->setAxisLabel("x [pixels]");
|
|
plot.getYAxis()->setAxisLabel("y [pixels]");
|
|
// 6.1 invert y-axis, so image is oriented correctly
|
|
plot.getYAxis()->setInverted(true);
|
|
|
|
// 7. fix axis aspect ratio to width/height, so pixels are square
|
|
plot.getPlotter()->setMaintainAspectRatio(true);
|
|
plot.getPlotter()->setAspectRatio(double(picture.width())/double(picture.height()));
|
|
|
|
// 8. autoscale the plot so the graph is contained
|
|
plot.zoomToFit();
|
|
|
|
// show plotter and make it a decent size
|
|
plot.show();
|
|
plot.resize(800,600);
|
|
plot.setWindowTitle("JKQTPColumnRGBMathImage");
|
|
|
|
|
|
|
|
return app.exec();
|
|
}
|