mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-11-16 02:25:50 +08:00
2d0b1e7935
added example for regression, IRLS robust regression, weighted regression and polynomial fitting
283 lines
8.4 KiB
C++
283 lines
8.4 KiB
C++
/*
|
|
Copyright (c) 2008-2019 Jan W. Krieger (<jan@jkrieger.de>, <j.krieger@dkfz.de>)
|
|
|
|
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef jkqtpmathtools_H_INCLUDED
|
|
#define jkqtpmathtools_H_INCLUDED
|
|
#include "jkqtcommon/jkqtp_imexport.h"
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <QPoint>
|
|
#include <QPointF>
|
|
#include <vector>
|
|
|
|
|
|
|
|
/*! \brief \f$ \sqrt{2\pi}=2.50662827463 \f$
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
#define JKQTPSTATISTICS_SQRT_2PI 2.50662827463
|
|
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_DOUBLE_NAN (std::numeric_limits<double>::signaling_NaN())
|
|
|
|
/** \brief float-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_FLOAT_NAN (std::numeric_limits<float>::signaling_NaN())
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_NAN JKQTP_DOUBLE_NAN
|
|
|
|
/** \brief double-value epsilon
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_DOUBLE_EPSILON (std::numeric_limits<double>::epsilon())
|
|
|
|
/** \brief float-value epsilon
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_FLOAT_EPSILON (std::numeric_limits<float>::epsilon())
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_EPSILON JKQTP_DOUBLE_EPSILON
|
|
|
|
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* This function uses static_cast<double>() by default, but certain specializations (e.g. for bool) are
|
|
* readily available.
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline constexpr double jkqtp_todouble(const T& d) {
|
|
return static_cast<double>(d);
|
|
}
|
|
|
|
|
|
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* Specialisation of the generic template jkqtp_todouble() with (true -> 1.0, false -> 0.0)
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<>
|
|
inline constexpr double jkqtp_todouble(const bool& d) {
|
|
return static_cast<double>((d)?1.0:0.0);
|
|
}
|
|
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!)
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to round and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* static_cast<T>(round(v));
|
|
* \endcode
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_roundTo(const double& v) {
|
|
return static_cast<T>(round(v));
|
|
}
|
|
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
|
|
* Finally the value is bounded to the range \a min ... \a max
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param min minimum output value
|
|
* \param v the value to round and cast
|
|
* \param max maximum output value
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* qBound(min, static_cast<T>(round(v)), max);
|
|
* \endcode
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_boundedRoundTo(T min, const double& v, T max) {
|
|
return qBound(min, static_cast<T>(round(v)), max);
|
|
}
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
|
|
* Finally the value is bounded to the range \c std::numeric_limits<T>::min() ... \c std::numeric_limits<T>::max()
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to round and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max())
|
|
* \endcode
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_boundedRoundTo(const double& v) {
|
|
return jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max());
|
|
}
|
|
|
|
/** \brief bounds a value \a v to the given range \a min ... \a max
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param min minimum output value
|
|
* \param v the value to round and cast
|
|
* \param max maximum output value
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_bounded(T min, T v, T max) {
|
|
if (v<min) return min;
|
|
if (v>max) return max;
|
|
return v;
|
|
}
|
|
|
|
/** \brief compare two floats \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyEqual(float a, float b, float epsilon=2.0f*JKQTP_FLOAT_EPSILON)
|
|
{
|
|
return fabsf(a - b) <= epsilon;
|
|
}
|
|
|
|
/** \brief compare two doubles \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyEqual(double a, double b, double epsilon=2.0*JKQTP_DOUBLE_EPSILON)
|
|
{
|
|
return fabs(a - b) <= epsilon;
|
|
}
|
|
|
|
/** \brief returns the given value \a v (i.e. identity function)
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_identity(const T& v) {
|
|
return v;
|
|
}
|
|
|
|
/** \brief returns the quare of the value \a v, i.e. \c v*v
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_sqr(const T& v) {
|
|
return v*v;
|
|
}
|
|
|
|
|
|
/*! \brief 4-th power of a number
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_pow4(T x) {
|
|
const T xx=x*x;
|
|
return xx*xx;
|
|
}
|
|
|
|
/*! \brief cube of a number
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_cube(T x) {
|
|
return x*x*x;
|
|
}
|
|
|
|
|
|
/*! \brief calculates the sign of number \a x (-1 for x<0 and +1 for x>=0)
|
|
\ingroup jkqtptools_math_basic
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_sign(T x) {
|
|
if (x<0) return -1;
|
|
else return 1;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inverseProp(const T& v) {
|
|
return T(1.0)/v;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inversePropSave(const T& v, const T& absMinV) {
|
|
T vv=v;
|
|
if (fabs(vv)<absMinV) vv=jkqtp_sign(v)*absMinV;
|
|
return T(1.0)/vv;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$, uses \c absMinV=std::numeric_limits<T>::epsilon()*100.0
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inversePropSaveDefault(const T& v) {
|
|
return jkqtp_inversePropSave<T>(v, std::numeric_limits<T>::epsilon()*100.0);
|
|
}
|
|
|
|
|
|
/** \brief calculate the distance between two QPointF points
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
*/
|
|
inline double jkqtp_distance(const QPointF& p1, const QPointF& p2){
|
|
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
|
|
}
|
|
|
|
/** \brief calculate the distance between two QPoint points
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
*/
|
|
inline double jkqtp_distance(const QPoint& p1, const QPoint& p2){
|
|
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
|
|
}
|
|
|
|
/** \brief check whether the dlotaing point number is OK (i.e. non-inf, non-NAN)
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
template <typename T>
|
|
inline bool JKQTPIsOKFloat(T v) {
|
|
return std::isfinite(v)&&(!std::isinf(v))&&(!std::isnan(v));
|
|
}
|
|
|
|
/** \brief evaluates a gaussian propability density function
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \f[ f(x,\mu, \sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}\cdot\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
|
|
*/
|
|
inline double jkqtp_gaussdist(double x, double mu=0.0, double sigma=1.0) {
|
|
return exp(-0.5*jkqtp_sqr(x-mu)/jkqtp_sqr(sigma))/sqrt(2.0*M_PI*sigma*sigma);
|
|
}
|
|
|
|
#endif // jkqtpmathtools_H_INCLUDED
|