mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-24 06:32:12 +08:00
f2004a6f66
IMPROVED/REWORKED: legend/key positioning as combination of 3 values, e.g. \c JKQTPKeyOutsideTop|JKQTPKeyTop|JKQTPKeyRight or \c JKQTPKeyInside|JKQTPKeyTopJKQTPKeyRight
305 lines
20 KiB
C++
305 lines
20 KiB
C++
/** \example datastore_statistics.cpp
|
|
* Explains how to use the internal statistics library (see \ref jkqtptools_statistics ) together with JKQTPDatastore to generate advanced plots for 1-dimensional data.
|
|
*
|
|
* \ref JKQTPlotterBasicJKQTPDatastoreStatistics
|
|
*/
|
|
|
|
#include "jkqtpexampleapplication.h"
|
|
#include <QApplication>
|
|
#include "jkqtplotter/jkqtplotter.h"
|
|
#include "jkqtplotter/graphs/jkqtppeakstream.h"
|
|
#include "jkqtplotter/graphs/jkqtpboxplot.h"
|
|
#include "jkqtplotter/graphs/jkqtpstatisticsadaptors.h"
|
|
#include "jkqtplotter/graphs/jkqtpevaluatedfunction.h"
|
|
#include "jkqtmath/jkqtpstatisticstools.h"
|
|
#include "jkqtcommon/jkqtpstringtools.h"
|
|
#include <random>
|
|
#include <cmath>
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
|
|
JKQTPAppSettingController highDPIController(argc, argv);
|
|
JKQTPExampleApplication app(argc, argv);
|
|
|
|
|
|
|
|
// 1. create a window with several plotters and get a pointer to the internal datastores (for convenience)
|
|
QWidget mainWidget;
|
|
QGridLayout* lay;
|
|
mainWidget.setLayout(lay=new QGridLayout);
|
|
JKQTPlotter* plot1=new JKQTPlotter(&mainWidget);
|
|
plot1->getPlotter()->setPlotLabel("Histograms and KDE");
|
|
JKQTPDatastore* datastore1=plot1->getDatastore();
|
|
lay->addWidget(plot1,1,0);
|
|
JKQTPlotter* plot1cum=new JKQTPlotter(datastore1, &mainWidget);
|
|
plot1cum->getPlotter()->setPlotLabel("Cummulative Histogram");
|
|
lay->addWidget(plot1cum,1,1);
|
|
JKQTPlotter* plot1kde=new JKQTPlotter(datastore1, &mainWidget);
|
|
plot1kde->getPlotter()->setPlotLabel("Kernel Density Estimate");
|
|
lay->addWidget(plot1kde,0,1);
|
|
JKQTPlotter* plot1box=new JKQTPlotter(datastore1, &mainWidget);
|
|
plot1box->getPlotter()->setPlotLabel("Boxplots");
|
|
lay->addWidget(plot1box,0,0);
|
|
|
|
|
|
// 2. Now we create two vectors with random values
|
|
// vector 1: The values are drawn from two different normal distributions d1 and d2,
|
|
// where for each datapoint the distribution is chosen randomly (by ddecide)
|
|
// vector 2: same values as in vector 1, if the value is drawn from d1
|
|
// vector 3: same values as in vector 1, if the value is drawn from d2
|
|
size_t randomdatacol1=datastore1->addColumn("random data 1");
|
|
size_t randomdatacol2=datastore1->addColumn("random data 2");
|
|
size_t randomdatacol3=datastore1->addColumn("random data 3");
|
|
std::random_device rd; // random number generators:
|
|
std::mt19937 gen{rd()};
|
|
gen.seed(12345);
|
|
std::uniform_int_distribution<> ddecide(0,1);
|
|
std::normal_distribution<> d1{0,1};
|
|
std::normal_distribution<> d2{6,1.2};
|
|
for (size_t i=0; i<150; i++) {
|
|
double v=0;
|
|
const int decide=ddecide(gen);
|
|
if (decide==0) v=d1(gen);
|
|
else v=d2(gen);
|
|
datastore1->appendToColumn(randomdatacol1, v);
|
|
if (decide==0) datastore1->appendToColumn(randomdatacol2, v);
|
|
else datastore1->appendToColumn(randomdatacol3, v);
|
|
}
|
|
QString d1_latex="$\\mathcal{N}("+jkqtp_floattolatexqstr(d1.mean(), 1)+","+jkqtp_floattolatexqstr(d1.stddev(), 1)+")$";
|
|
QString d2_latex="$\\mathcal{N}("+jkqtp_floattolatexqstr(d2.mean(), 1)+","+jkqtp_floattolatexqstr(d2.stddev(), 1)+")$";
|
|
|
|
// 3.1. To visualize the data, a simple JKQTPPeakStreamGraph is used:
|
|
JKQTPPeakStreamGraph* gData1;
|
|
plot1box->addGraph(gData1=new JKQTPPeakStreamGraph(plot1box));
|
|
gData1->setDataColumn(randomdatacol1);
|
|
gData1->setBaseline(-0.1);
|
|
gData1->setPeakHeight(-0.05);
|
|
gData1->setDrawBaseline(false);
|
|
// 3.2. We calculate some basic statistics of that column and display it in the graph legend (via the graph title):
|
|
// Here we use functions of the statistics library for the first time. The statistics library uses an iterator interface
|
|
// scheme, much like the algorithms of the C++ standard library. Therefore we the iterator interface of JKQTPDatastore
|
|
// when calling the statistics functions.
|
|
size_t N=0;
|
|
double mean=jkqtpstatAverage(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), &N);
|
|
double std=jkqtpstatStdDev(datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1));
|
|
gData1->setTitle(QString("random data $"+d1_latex+"+"+d2_latex+"$: $\\overline{X_1}=%1, \\sigma_{X_1}=%2, N_{X_3}=%3$").arg(jkqtp_floattolatexqstr(mean, 2)).arg(jkqtp_floattolatexqstr(std, 2)).arg(N));
|
|
|
|
// 3.3. same as 3.1-3.2, but for the second and thirdcolumn of data:
|
|
JKQTPPeakStreamGraph* gData2;
|
|
plot1box->addGraph(gData2=new JKQTPPeakStreamGraph(plot1box));
|
|
gData2->setDataColumn(randomdatacol2);
|
|
gData2->setBaseline(-0.1);
|
|
gData2->setPeakHeight(0.05);
|
|
gData2->setDrawBaseline(false);
|
|
N=0;
|
|
mean=jkqtpstatAverage(datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2), &N);
|
|
std=jkqtpstatStdDev(datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2));
|
|
gData2->setTitle(QString("random data subset $"+d1_latex+"$: $\\overline{X_2}=%1, \\sigma_{X_3}=%2, N_{X_3}=%3$").arg(jkqtp_floattolatexqstr(mean, 2)).arg(jkqtp_floattolatexqstr(std, 2)).arg(N));
|
|
JKQTPPeakStreamGraph* gData3;
|
|
plot1box->addGraph(gData3=new JKQTPPeakStreamGraph(plot1box));
|
|
gData3->setDataColumn(randomdatacol3);
|
|
gData3->setBaseline(-0.15);
|
|
gData3->setPeakHeight(-0.05);
|
|
gData3->setDrawBaseline(false);
|
|
N=0;
|
|
mean=jkqtpstatAverage(datastore1->begin(randomdatacol3), datastore1->end(randomdatacol3), &N);
|
|
std=jkqtpstatStdDev(datastore1->begin(randomdatacol3), datastore1->end(randomdatacol3));
|
|
gData3->setTitle(QString("random data subset $"+d2_latex+"$: $\\overline{X_3}=%1, \\sigma_{X_3}=%2, N_{X_3}=%3$").arg(jkqtp_floattolatexqstr(mean, 2)).arg(jkqtp_floattolatexqstr(std, 2)).arg(N));
|
|
|
|
|
|
// 3.4. Now we calculate a 5-Value Summary of the two datasets and use it to plot corresponding boxplots
|
|
// This can be done by hand, or you can call jkqtpstatAddHBoxplot() which saves some typing. This function
|
|
// uses jkqtpstat5NumberStatistics() internally to calculate the statistics.
|
|
JKQTPBoxplotHorizontalElement* gBox2=jkqtpstatAddHBoxplot(plot1box->getPlotter(), datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2), -0.25);
|
|
gBox2->setColor(gData2->getKeyLabelColor());
|
|
gBox2->setBoxWidthAbsolute(16);
|
|
JKQTPBoxplotHorizontalElement* gBox3=jkqtpstatAddHBoxplot(plot1box->getPlotter(), datastore1->begin(randomdatacol3), datastore1->end(randomdatacol3), -0.35);
|
|
gBox3->setColor(gData3->getKeyLabelColor());
|
|
gBox3->setBoxWidthAbsolute(16);
|
|
// 3.5. In addition to jkqtpstatAddHBoxplot() there is also jkqtpstatAddHBoxplotAndOutliers(), which generates two graphs:
|
|
// one JKQTPBoxplotHorizontalElement for the boxplot and one JKQTPSingleColumnSymbolsGraph for the outliers
|
|
// Note that this function generates additional data columns in the datastore of the provided plotter to represent
|
|
// the outlier locations.
|
|
// jkqtpstatAddHBoxplotAndOutliers() calculates the 3% and 97% Quantiles for the boxplots whiskers' ends. You can change that
|
|
// by supplying other quantiles to the call
|
|
std::pair<JKQTPBoxplotHorizontalElement*,JKQTPSingleColumnSymbolsGraph*> gBox1=jkqtpstatAddHBoxplotAndOutliers(plot1box->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3);
|
|
// jkqtpstatAddHBoxplotAndOutliers() calculates the 3% and 97% Quantiles for the boxplots whiskers' ends. You can change that
|
|
// by supplying other quantiles to the call
|
|
//std::pair<JKQTPBoxplotHorizontalElement*,JKQTPXYLineGraph*> gBox1=jkqtpstatAddHBoxplotAndOutliers(plot1box->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), -0.3,
|
|
// 0.25, 0.75, // 1. and 3. Quartile for the boxplot box
|
|
// 0.05, 0.95 // Quantiles for the boxplot box whiskers' ends
|
|
// );
|
|
gBox1.first->setColor(gData1->getKeyLabelColor());
|
|
gBox1.second->setColor(gData1->getKeyLabelColor());
|
|
gBox1.second->setSymbolType(JKQTPGraphSymbols::JKQTPCircle);
|
|
gBox1.second->setSymbolSize(7);
|
|
gBox1.first->setBoxWidthAbsolute(16);
|
|
// the simple alternative would have been:
|
|
//JKQTPBoxplotHorizontalElement* gBox1;
|
|
//plot1box->addGraph(gBox1=jkqtpstatAddHBoxplot(plot1box->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1)));
|
|
//gBox1->setPos(-0.3);
|
|
//gBox1->setColor(gData1->getKeyLabelColor());
|
|
//gBox1->setBoxWidthAbsolute(16);
|
|
|
|
|
|
|
|
|
|
// 4.1. We repeat the JKQTPPeakStreamGraph visualization from above:
|
|
JKQTPPeakStreamGraph* pgData1;
|
|
plot1->addGraph(pgData1=new JKQTPPeakStreamGraph(plot1));
|
|
pgData1->setDataColumn(randomdatacol1);
|
|
pgData1->setBaseline(-0.1);
|
|
pgData1->setPeakHeight(-0.05);
|
|
pgData1->setDrawBaseline(false);
|
|
pgData1->setTitle("random data $"+d1_latex+"+"+d2_latex+"$");
|
|
|
|
// 4.2. same as 3.1-3.2, but for the second and thirdcolumn of data:
|
|
JKQTPPeakStreamGraph* pgData2;
|
|
plot1->addGraph(pgData2=new JKQTPPeakStreamGraph(plot1));
|
|
pgData2->setDataColumn(randomdatacol2);
|
|
pgData2->setBaseline(-0.1);
|
|
pgData2->setPeakHeight(0.05);
|
|
pgData2->setDrawBaseline(false);
|
|
pgData2->setTitle("random data subset $"+d1_latex+"$");
|
|
JKQTPPeakStreamGraph* pgData3;
|
|
plot1->addGraph(pgData3=new JKQTPPeakStreamGraph(plot1));
|
|
pgData3->setDataColumn(randomdatacol3);
|
|
pgData3->setBaseline(-0.15);
|
|
pgData3->setPeakHeight(-0.05);
|
|
pgData3->setDrawBaseline(false);
|
|
pgData3->setTitle("random data subset $"+d2_latex+"$");
|
|
|
|
// 4.3. for comparison we add plots of the initial distributions:
|
|
plot1->addGraph(new JKQTPXFunctionLineGraph(std::bind(&jkqtp_gaussdist, std::placeholders::_1, d1.mean(), d1.stddev()), d1_latex, plot1));
|
|
plot1->addGraph(new JKQTPXFunctionLineGraph(std::bind(&jkqtp_gaussdist, std::placeholders::_1, d2.mean(), d2.stddev()), d2_latex, plot1));
|
|
|
|
|
|
|
|
// 4.1. next we calculate a histogram of the data and add a plot to the graph:
|
|
JKQTPBarVerticalGraph* hist1=jkqtpstatAddHHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 15);
|
|
// here the bins are defined by the full range of the data and the bin count (15) is specified
|
|
// alternatively you could specify the bin width and the number would be calculated automatically:
|
|
//JKQTPBarVerticalGraph* hist1=jkqtpstatAddHHistogram1DAutoranged(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), 0.5);
|
|
// a third option is to define the bins via a vector of values (lower borders):
|
|
//std::vector<double> bins{-2,-1.5,-1,-0.75,-0.5,-0.25,0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,7,8,9,10};
|
|
//JKQTPBarVerticalGraph* hist1=jkqtpstatAddHHistogram1D(plot1->getPlotter(), datastore1->begin(randomdatacol1), datastore1->end(randomdatacol1), bins.begin(), bins.end());
|
|
hist1->setColor(QColorWithAlphaF(gData1->getKeyLabelColor(), 0.5)); // use same color as gData1, but with alpha set to 0.5 (50% transparency)
|
|
|
|
|
|
|
|
|
|
// 5.1. instead of histograms, it can also make sense to calculate Kernel Density Estimates, especially when only few datapoints are available.
|
|
// To demonstrate this, we first calculate take a subset of the values in randomdatacol1 as a small test dataset.
|
|
size_t randomdatacol1subset=datastore1->copyColumn(randomdatacol1, 1, 7, "subset of "+datastore1->getColumnName(randomdatacol1));
|
|
JKQTPPeakStreamGraph* gData2kde;
|
|
plot1kde->addGraph(gData2kde=new JKQTPPeakStreamGraph(plot1kde));
|
|
gData2kde->setDataColumn(randomdatacol1subset);
|
|
gData2kde->setBaseline(-0.05);
|
|
gData2kde->setPeakHeight(-0.1);
|
|
gData2kde->setDrawBaseline(false);
|
|
gData2kde->setTitle("data");
|
|
// first we plot the histogram of this dataset, with 0.5 bin width:
|
|
JKQTPBarVerticalGraph* hist1kde=jkqtpstatAddHHistogram1DAutoranged(plot1kde->getPlotter(), datastore1->begin(randomdatacol1subset), datastore1->end(randomdatacol1subset), 0.5);
|
|
hist1kde->setTitle("histogram");
|
|
hist1kde->setColor(QColorWithAlphaF(gData2kde->getKeyLabelColor(), 0.25)); // use same color as gData1, but with alpha set to 0.5 (50% transparency)
|
|
// 5.2. now we first extimate the bandwidth:
|
|
double kdeBandwidth=jkqtpstatEstimateKDEBandwidth(datastore1->begin(randomdatacol1subset), datastore1->end(randomdatacol1subset));
|
|
// and generate a vector of positions, where we want to evaluate the KDE:
|
|
std::vector<double> xKDE;
|
|
for (double x=-5; x<=10; x+=0.01) xKDE.push_back(x);
|
|
// now the KDE can be added (gaussian kernel, evaluated at the positions in xKDE):
|
|
JKQTPXYLineGraph* kde1=jkqtpstatAddHKDE1D(plot1kde->getPlotter(), datastore1->begin(randomdatacol1subset), datastore1->end(randomdatacol1subset),
|
|
// evaluate at locations in xKDE
|
|
xKDE.begin(), xKDE.end(),
|
|
// use a gaussian kernel
|
|
&jkqtpstatKernel1DGaussian,
|
|
// estimate the bandwidth
|
|
kdeBandwidth);
|
|
kde1->setTitle("KDE, gaussian, $\\mbox{BW}="+jkqtp_floattolatexqstr(kdeBandwidth, 3)+"$");
|
|
JKQTPXYLineGraph* kde11=jkqtpstatAddHKDE1D(plot1kde->getPlotter(), datastore1->begin(randomdatacol1subset), datastore1->end(randomdatacol1subset),
|
|
// evaluate at locations in xKDE
|
|
xKDE.begin(), xKDE.end(),
|
|
// use a gaussian kernel
|
|
&jkqtpstatKernel1DGaussian,
|
|
// a very small bandwidth
|
|
0.1);
|
|
kde11->setTitle("KDE, gaussian, $\\mbox{BW}="+jkqtp_floattolatexqstr(0.1, 3)+"$");
|
|
// here a second KDE with a different kernel (Epanechnikov) and the range of evaluation positions defined via three numbers:
|
|
JKQTPXYLineGraph* kde2=jkqtpstatAddHKDE1D(plot1kde->getPlotter(), datastore1->begin(randomdatacol1subset), datastore1->end(randomdatacol1subset),
|
|
// evaluate at locations between -5 and 10, in steps of 0.01 (equivalent to the line above, but without pre-calculating a vector)
|
|
-5.0,0.01,10.0,
|
|
// use a gaussian kernel
|
|
&jkqtpstatKernel1DEpanechnikov,
|
|
// estimate the bandwidth
|
|
kdeBandwidth);
|
|
kde2->setTitle("KDE, epanechnikov, $\\mbox{BW}="+jkqtp_floattolatexqstr(kdeBandwidth, 3)+"$");
|
|
kde1->setColor(QColorWithAlphaF(gData2kde->getKeyLabelColor(), 0.5)); // use same color as gData1, but with alpha set to 0.5 (50% transparency)
|
|
// 5.3. for comparison we add plots of the initial distributions:
|
|
plot1kde->addGraph(new JKQTPXFunctionLineGraph(std::bind(&jkqtp_gaussdist, std::placeholders::_1, d1.mean(), d1.stddev()), d1_latex, plot1));
|
|
plot1kde->addGraph(new JKQTPXFunctionLineGraph(std::bind(&jkqtp_gaussdist, std::placeholders::_1, d2.mean(), d2.stddev()), d2_latex, plot1));
|
|
|
|
|
|
|
|
// 6.1. now we calculate a cummulative histogram:
|
|
JKQTPPeakStreamGraph* gData2com;
|
|
plot1cum->addGraph(gData2com=new JKQTPPeakStreamGraph(plot1cum));
|
|
gData2com->setDataColumn(randomdatacol2);
|
|
gData2com->setBaseline(-1);
|
|
gData2com->setPeakHeight(-10);
|
|
gData2com->setDrawBaseline(false);
|
|
JKQTPBarVerticalGraph* histcum2=jkqtpstatAddHHistogram1DAutoranged(plot1cum->getPlotter(), datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2),
|
|
// bin width
|
|
0.1,
|
|
// normalized, cummulative
|
|
false, true);
|
|
histcum2->setColor(QColorWithAlphaF(gData2com->getKeyLabelColor(), 0.2)); // use same color as gData1, but with alpha set to 0.5 (50% transparency)
|
|
// 6.2. also a kernel density estimate can be accumulated:
|
|
JKQTPXYLineGraph* kdecum2=jkqtpstatAddHKDE1D(plot1cum->getPlotter(), datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2),
|
|
// evaluate at locations between -3.5 and 3.5, in steps of 0.01
|
|
-3.5,0.01,3.5,
|
|
// use a uniform/box kernel
|
|
&jkqtpstatKernel1DUniform,
|
|
// estimate the bandwidth
|
|
jkqtpstatEstimateKDEBandwidth(datastore1->begin(randomdatacol2), datastore1->end(randomdatacol2)),
|
|
// cummulative KDE:
|
|
true);
|
|
kdecum2->setColor(gData2com->getKeyLabelColor()); // use same color as gData1, but with alpha set to 0.5 (50% transparency)
|
|
|
|
|
|
// autoscale the plot so the graph is contained
|
|
plot1->zoomToFit();
|
|
plot1->setGrid(false);
|
|
plot1->getXAxis()->setShowZeroAxis(false);
|
|
plot1->getMainKey()->setBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
|
|
plot1->setY(-0.25, 0.45);
|
|
plot1cum->zoomToFit();
|
|
plot1cum->setGrid(false);
|
|
plot1cum->getXAxis()->setShowZeroAxis(false);
|
|
plot1cum->getMainKey()->setBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
|
|
plot1kde->zoomToFit();
|
|
plot1kde->setGrid(false);
|
|
plot1kde->getXAxis()->setShowZeroAxis(false);
|
|
plot1kde->getMainKey()->setBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
|
|
plot1kde->setY(-0.155, 0.45);
|
|
plot1box->zoomToFit();
|
|
plot1box->setGrid(false);
|
|
plot1box->getXAxis()->setShowZeroAxis(false);
|
|
plot1box->getMainKey()->setBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
|
|
plot1box->setY(-0.4, 0.0);
|
|
|
|
// show plotter and make it a decent size
|
|
mainWidget.show();
|
|
mainWidget.resize(1200,800);
|
|
|
|
app.addExportStepPlotFunctor([&]() { gData1->setVisible(true); gBox1.first->setVisible(false); gBox1.second->setVisible(false); gData2->setVisible(true); gBox2->setVisible(false); gData3->setVisible(true); gBox3->setVisible(false); plot1box->redrawPlot(); return plot1box; });
|
|
app.addExportStepPlotFunctor([&]() { gData1->setVisible(false); gBox1.first->setVisible(false); gBox1.second->setVisible(false); gData2->setVisible(true); gBox2->setVisible(true); gData3->setVisible(true); gBox3->setVisible(true); plot1box->redrawPlot(); return plot1box; });
|
|
app.addExportStepPlotFunctor([&]() { gData1->setVisible(true); gBox1.first->setVisible(true); gBox1.second->setVisible(true); gData2->setVisible(false); gBox2->setVisible(false); gData3->setVisible(false); gBox3->setVisible(false); plot1box->redrawPlot(); return plot1box; });
|
|
app.addExportStepPlotFunctor([&]() { return plot1; });
|
|
app.addExportStepPlotFunctor([&]() { return plot1kde; });
|
|
app.addExportStepPlotFunctor([&]() { return plot1cum; });
|
|
|
|
return app.exec();
|
|
}
|