mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-12-26 10:31:39 +08:00
88 lines
5.9 KiB
C++
88 lines
5.9 KiB
C++
/*
|
|
Copyright (c) 2008-2024 Jan W. Krieger (<jan@jkrieger.de>)
|
|
|
|
last modification: $LastChangedDate$ (revision $Rev$)
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License (LGPL) as published by
|
|
the Free Software Foundation, either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License (LGPL) for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License (LGPL)
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
|
|
#include "jkqtpstatregression.h"
|
|
#include <stdexcept>
|
|
|
|
std::function<double (double, double, double)> jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType type) {
|
|
switch(type) {
|
|
case JKQTPStatRegressionModelType::Linear: return [](double x, double a, double b)->double { return a+b*x; };
|
|
case JKQTPStatRegressionModelType::PowerLaw: return [](double x, double a, double b)->double { return a*pow(x,b); };
|
|
case JKQTPStatRegressionModelType::Exponential: return [](double x, double a, double b)->double { return a*exp(b*x); };
|
|
case JKQTPStatRegressionModelType::Logarithm: return [](double x, double a, double b)->double { return a+b*log(x); };
|
|
}
|
|
throw std::runtime_error("unknown JKQTPStatRegressionModelType in jkqtpStatGenerateRegressionModel()");
|
|
}
|
|
|
|
QString jkqtpstatRegressionModel2Latex(JKQTPStatRegressionModelType type, double a, double b) {
|
|
switch(type) {
|
|
case JKQTPStatRegressionModelType::Linear: return QString("f(x)=%1%2{\\cdot}x").arg(jkqtp_floattolatexqstr(a, 2, true, 1e-16,1e-2, 1e4,false)).arg(jkqtp_floattolatexqstr(b, 2, true, 1e-16,1e-2, 1e4,true));
|
|
case JKQTPStatRegressionModelType::PowerLaw: return QString("f(x)=%1{\\cdot}x^{%2}").arg(jkqtp_floattolatexqstr(a, 3)).arg(jkqtp_floattolatexqstr(b, 3));
|
|
case JKQTPStatRegressionModelType::Exponential: return QString("f(x)=%1{\\cdot}\\exp(%2{\\cdot}x)").arg(jkqtp_floattolatexqstr(a, 3)).arg(jkqtp_floattolatexqstr(b, 3));
|
|
case JKQTPStatRegressionModelType::Logarithm: return QString("f(x)=%1%2{\\cdot}\\ln(x)").arg(jkqtp_floattolatexqstr(a, 2, true, 1e-16,1e-2, 1e4,false)).arg(jkqtp_floattolatexqstr(b, 2, true, 1e-16,1e-2, 1e4,true));
|
|
}
|
|
throw std::runtime_error("unknown JKQTPStatRegressionModelType in jkqtpstatRegressionModel2Latex()");
|
|
}
|
|
|
|
std::function<double (double)> jkqtpStatGenerateRegressionModel(JKQTPStatRegressionModelType type, double a, double b) {
|
|
auto res=jkqtpStatGenerateRegressionModel(type);
|
|
return std::bind(res, std::placeholders::_1, a, b);
|
|
}
|
|
|
|
std::pair<std::function<double (double)>, std::function<double (double)> > jkqtpStatGenerateTransformation(JKQTPStatRegressionModelType type) {
|
|
auto logF=[](double x)->double { return log(x); };
|
|
//auto expF=[](double x)->double { return exp(x); };
|
|
auto idF=&jkqtp_identity<double>;
|
|
switch(type) {
|
|
case JKQTPStatRegressionModelType::Linear: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
case JKQTPStatRegressionModelType::PowerLaw: return std::pair<std::function<double(double)>,std::function<double(double)> >(logF, logF);
|
|
case JKQTPStatRegressionModelType::Exponential: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, logF);
|
|
case JKQTPStatRegressionModelType::Logarithm: return std::pair<std::function<double(double)>,std::function<double(double)> >(logF, idF);
|
|
}
|
|
throw std::runtime_error("unknown JKQTPStatRegressionModelType in jkqtpStatGenerateTransformation()");
|
|
}
|
|
|
|
std::pair<std::function<double (double)>, std::function<double (double)> > jkqtpStatGenerateParameterATransformation(JKQTPStatRegressionModelType type) {
|
|
auto logF=[](double x)->double { return log(x); };
|
|
auto expF=[](double x)->double { return exp(x); };
|
|
auto idF=&jkqtp_identity<double>;
|
|
switch(type) {
|
|
case JKQTPStatRegressionModelType::Linear: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
case JKQTPStatRegressionModelType::PowerLaw: return std::pair<std::function<double(double)>,std::function<double(double)> >(logF, expF);
|
|
case JKQTPStatRegressionModelType::Exponential: return std::pair<std::function<double(double)>,std::function<double(double)> >(logF, expF);
|
|
case JKQTPStatRegressionModelType::Logarithm: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
}
|
|
throw std::runtime_error("unknown JKQTPStatRegressionModelType in jkqtpStatGenerateParameterATransformation()");
|
|
}
|
|
|
|
std::pair<std::function<double (double)>, std::function<double (double)> > jkqtpStatGenerateParameterBTransformation(JKQTPStatRegressionModelType type) {
|
|
//auto logF=[](double x)->double { return log(x); };
|
|
//auto expF=[](double x)->double { return exp(x); };
|
|
auto idF=&jkqtp_identity<double>;
|
|
switch(type) {
|
|
case JKQTPStatRegressionModelType::Linear: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
case JKQTPStatRegressionModelType::PowerLaw: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
case JKQTPStatRegressionModelType::Exponential: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
case JKQTPStatRegressionModelType::Logarithm: return std::pair<std::function<double(double)>,std::function<double(double)> >(idF, idF);
|
|
}
|
|
throw std::runtime_error("unknown JKQTPStatRegressionModelType in jkqtpStatGenerateParameterBTransformation()");
|
|
}
|