mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-11-16 02:25:50 +08:00
84 lines
3.0 KiB
C++
84 lines
3.0 KiB
C++
#include <QApplication>
|
|
#include <cmath>
|
|
#include "jkqtplotter/jkqtplotter.h"
|
|
#include "jkqtplotter/jkqtpgraphsimage.h"
|
|
#include <opencv2/imgcodecs.hpp>
|
|
|
|
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
QApplication app(argc, argv);
|
|
|
|
JKQtPlotter plot;
|
|
|
|
|
|
// 1. create a plotter window and get a pointer to the internal datastore (for convenience)
|
|
plot.get_plotter()->set_useAntiAliasingForGraphs(true); // nicer (but slower) plotting
|
|
plot.get_plotter()->set_useAntiAliasingForSystem(true); // nicer (but slower) plotting
|
|
plot.get_plotter()->set_useAntiAliasingForText(true); // nicer (but slower) text rendering
|
|
JKQTPdatastore* ds=plot.getDatastore();
|
|
|
|
|
|
// 2. now we open a BMP-file and load it into an OpenCV cv::Mat
|
|
cv::Mat picture = cv::imread("example.bmp");
|
|
|
|
|
|
|
|
// 3. make data available to JKQtPlotter by adding it to the internal datastore.
|
|
// In this step the contents of each channel of the openCV cv::Mat is copied into a column
|
|
// of the datastore in row-major order
|
|
size_t cPictureR=ds->copyCvMatToColumn(picture, "R-channel", 2);
|
|
size_t cPictureG=ds->copyCvMatToColumn(picture, "G-channel", 1);
|
|
size_t cPictureB=ds->copyCvMatToColumn(picture, "B-channel", 0);
|
|
|
|
|
|
// 4. create a graph (JKQTPColumnRGBMathImage) with the columns created above as data
|
|
JKQTPColumnRGBMathImage* graph=new JKQTPColumnRGBMathImage(&plot);
|
|
graph->set_title("");
|
|
// set size of the data (the datastore does not contain this info, as it only manages 1D columns of data and this is used to assume a row-major ordering
|
|
graph->set_Nx(picture.cols);
|
|
graph->set_Ny(picture.rows);
|
|
// where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner)
|
|
graph->set_x(0);
|
|
graph->set_y(0);
|
|
// width and height of the image in plot-axis-coordinates
|
|
graph->set_width(picture.cols);
|
|
graph->set_height(picture.rows);
|
|
// image column with the data
|
|
graph->set_imageRColumn(cPictureR);
|
|
graph->set_imageGColumn(cPictureG);
|
|
graph->set_imageBColumn(cPictureB);
|
|
// determine min/max of each channel manually
|
|
graph->set_imageMinR(0);
|
|
graph->set_imageMaxR(255);
|
|
graph->set_imageMinG(0);
|
|
graph->set_imageMaxG(255);
|
|
graph->set_imageMinB(0);
|
|
graph->set_imageMaxB(255);
|
|
|
|
|
|
|
|
// 5. add the graphs to the plot, so it is actually displayed
|
|
plot.addGraph(graph);
|
|
|
|
// 6. set axis labels
|
|
plot.get_xAxis()->set_axisLabel("x [pixels]");
|
|
plot.get_yAxis()->set_axisLabel("y [pixels]");
|
|
|
|
// 7. fix axis aspect ratio to width/height, so pixels are square
|
|
plot.get_plotter()->set_maintainAspectRatio(true);
|
|
plot.get_plotter()->set_aspectRatio(double(picture.cols)/double(picture.rows));
|
|
|
|
// 8. autoscale the plot so the graph is contained
|
|
plot.zoomToFit();
|
|
|
|
// show plotter and make it a decent size
|
|
plot.show();
|
|
plot.resize(800,600);
|
|
plot.setWindowTitle("JKQTPColumnMathImage");
|
|
|
|
|
|
return app.exec();
|
|
}
|