mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-11-16 02:25:50 +08:00
527 lines
15 KiB
C++
527 lines
15 KiB
C++
/*
|
|
Copyright (c) 2008-2022 Jan W. Krieger (<jan@jkrieger.de>)
|
|
|
|
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef jkqtpmathtools_H_INCLUDED
|
|
#define jkqtpmathtools_H_INCLUDED
|
|
#include "jkqtcommon/jkqtcommon_imexport.h"
|
|
#include "jkqtcommon/jkqtpstringtools.h"
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <QPoint>
|
|
#include <QPointF>
|
|
#include <vector>
|
|
#include <QString>
|
|
#include <functional>
|
|
|
|
|
|
|
|
/*! \brief \f$ \pi=3.14159... \f$
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
#ifdef M_PI
|
|
# define JKQTPSTATISTICS_PI M_PI
|
|
#else
|
|
# define JKQTPSTATISTICS_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
|
|
/*! \brief \f$ \sqrt{2\pi}=2.50662827463 \f$
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
#define JKQTPSTATISTICS_SQRT_2PI 2.50662827463
|
|
|
|
|
|
/*! \brief \f$ \mbox{ln}(10)=2.30258509299404568402... \f$
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
#ifdef M_LN10
|
|
# define JKQTPSTATISTICS_LN10 M_LN10
|
|
#else
|
|
# define JKQTPSTATISTICS_LN10 2.30258509299404568402
|
|
#endif
|
|
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_DOUBLE_NAN (std::numeric_limits<double>::signaling_NaN())
|
|
|
|
/** \brief float-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_FLOAT_NAN (std::numeric_limits<float>::signaling_NaN())
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_NAN JKQTP_DOUBLE_NAN
|
|
|
|
/** \brief double-value epsilon
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_DOUBLE_EPSILON (std::numeric_limits<double>::epsilon())
|
|
|
|
/** \brief float-value epsilon
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_FLOAT_EPSILON (std::numeric_limits<float>::epsilon())
|
|
|
|
/** \brief double-value NotANumber
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
#define JKQTP_EPSILON JKQTP_DOUBLE_EPSILON
|
|
|
|
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* This function uses static_cast<double>() by default, but certain specializations (e.g. for bool) are
|
|
* readily available.
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline constexpr double jkqtp_todouble(const T& d) {
|
|
return static_cast<double>(d);
|
|
}
|
|
|
|
|
|
/** \brief converts a boolean to a double, is used to convert boolean to double by JKQTPDatastore
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* Specialisation of the generic template jkqtp_todouble() with (true -> 1.0, false -> 0.0)
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<>
|
|
inline constexpr double jkqtp_todouble(const bool& d) {
|
|
return static_cast<double>((d)?1.0:0.0);
|
|
}
|
|
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!)
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to round and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* static_cast<T>(round(v));
|
|
* \endcode
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_roundTo(const double& v) {
|
|
return static_cast<T>(round(v));
|
|
}
|
|
|
|
/** \brief round a double \a v using ceil() and convert it to a specified type T (static_cast!)
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to ceil and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* static_cast<T>(ceil(v));
|
|
* \endcode
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_ceilTo(const double& v) {
|
|
return static_cast<T>(ceil(v));
|
|
}
|
|
|
|
/** \brief round a double \a v using trunc() and convert it to a specified type T (static_cast!)
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to trunc and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* static_cast<T>(trunc(v));
|
|
* \endcode
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_truncTo(const double& v) {
|
|
return static_cast<T>(trunc(v));
|
|
}
|
|
|
|
/** \brief round a double \a v using floor() and convert it to a specified type T (static_cast!)
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to floor and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* static_cast<T>(floor(v));
|
|
* \endcode
|
|
*
|
|
* \callergraph
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_floorTo(const double& v) {
|
|
return static_cast<T>(floor(v));
|
|
}
|
|
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
|
|
* Finally the value is bounded to the range \a min ... \a max
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param min minimum output value
|
|
* \param v the value to round and cast
|
|
* \param max maximum output value
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* qBound(min, static_cast<T>(round(v)), max);
|
|
* \endcode
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_boundedRoundTo(T min, const double& v, T max) {
|
|
return qBound(min, static_cast<T>(round(v)), max);
|
|
}
|
|
|
|
/** \brief round a double \a v using round() and convert it to a specified type T (static_cast!).
|
|
* Finally the value is bounded to the range \c std::numeric_limits<T>::min() ... \c std::numeric_limits<T>::max()
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param v the value to round and cast
|
|
*
|
|
* this is equivalent to
|
|
* \code
|
|
* jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max())
|
|
* \endcode
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_boundedRoundTo(const double& v) {
|
|
return jkqtp_boundedRoundTo<T>(std::numeric_limits<T>::min(), v, std::numeric_limits<T>::max());
|
|
}
|
|
|
|
/** \brief bounds a value \a v to the given range \a min ... \a max
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \tparam T a numeric datatype (int, double, ...)
|
|
* \param min minimum output value
|
|
* \param v the value to round and cast
|
|
* \param max maximum output value
|
|
*/
|
|
template<typename T>
|
|
inline T jkqtp_bounded(T min, T v, T max) {
|
|
if (v<min) return min;
|
|
if (v>max) return max;
|
|
return v;
|
|
}
|
|
|
|
/** \brief compare two floats \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyEqual(float a, float b, float epsilon=2.0f*JKQTP_FLOAT_EPSILON)
|
|
{
|
|
return fabsf(a - b) <= epsilon;
|
|
}
|
|
|
|
/** \brief compare two doubles \a a and \a b for euqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyEqual(double a, double b, double epsilon=2.0*JKQTP_DOUBLE_EPSILON)
|
|
{
|
|
return fabs(a - b) <= epsilon;
|
|
}
|
|
|
|
/** \brief compare two floats \a a and \a b for uneuqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyUnequal(float a, float b, float epsilon=2.0f*JKQTP_FLOAT_EPSILON)
|
|
{
|
|
return fabsf(a - b) > epsilon;
|
|
}
|
|
|
|
/** \brief compare two doubles \a a and \a b for uneuqality, where any difference smaller than \a epsilon is seen as equality
|
|
* \ingroup jkqtptools_math_basic */
|
|
inline bool jkqtp_approximatelyUnequal(double a, double b, double epsilon=2.0*JKQTP_DOUBLE_EPSILON)
|
|
{
|
|
return fabs(a - b) > epsilon;
|
|
}
|
|
|
|
/** \brief returns the given value \a v (i.e. identity function)
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_identity(const T& v) {
|
|
return v;
|
|
}
|
|
|
|
/** \brief returns the quare of the value \a v, i.e. \c v*v
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_sqr(const T& v) {
|
|
return v*v;
|
|
}
|
|
|
|
|
|
/*! \brief 4-th power of a number
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_pow4(T x) {
|
|
const T xx=x*x;
|
|
return xx*xx;
|
|
}
|
|
|
|
/*! \brief 5-th power of a number
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_pow5(T x) {
|
|
const T xx=x*x;
|
|
return xx*xx*x;
|
|
}
|
|
|
|
/*! \brief cube of a number
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_cube(T x) {
|
|
return x*x*x;
|
|
}
|
|
|
|
|
|
/*! \brief calculates the sign of number \a x (-1 for x<0 and +1 for x>=0)
|
|
\ingroup jkqtptools_math_basic
|
|
*/
|
|
template <class T>
|
|
inline T jkqtp_sign(T x) {
|
|
if (x<0) return -1;
|
|
else return 1;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inverseProp(const T& v) {
|
|
return T(1.0)/v;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inversePropSave(const T& v, const T& absMinV) {
|
|
T vv=v;
|
|
if (fabs(vv)<absMinV) vv=jkqtp_sign(v)*absMinV;
|
|
return T(1.0)/vv;
|
|
}
|
|
|
|
/** \brief returns the inversely proportional value 1/\a v of \a v and ensures that \f$ |v|\geq \mbox{absMinV} \f$, uses \c absMinV=std::numeric_limits<T>::epsilon()*100.0
|
|
* \ingroup jkqtptools_math_basic */
|
|
template<typename T>
|
|
inline T jkqtp_inversePropSaveDefault(const T& v) {
|
|
return jkqtp_inversePropSave<T>(v, std::numeric_limits<T>::epsilon()*100.0);
|
|
}
|
|
|
|
/*! \brief j0() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_j0(double x) {
|
|
#if Q_CC_MSVC
|
|
return _j0(x);
|
|
#else
|
|
return j0(x);
|
|
#endif
|
|
}
|
|
|
|
/*! \brief j1() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_j1(double x) {
|
|
#if Q_CC_MSVC
|
|
return _j1(x);
|
|
#else
|
|
return j1(x);
|
|
#endif
|
|
}
|
|
|
|
/*! \brief y0() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_y0(double x) {
|
|
#if Q_CC_MSVC
|
|
return _y0(x);
|
|
#else
|
|
return y0(x);
|
|
#endif
|
|
}
|
|
|
|
/*! \brief y1() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_y1(double x) {
|
|
#if Q_CC_MSVC
|
|
return _y1(x);
|
|
#else
|
|
return y1(x);
|
|
#endif
|
|
}
|
|
|
|
/*! \brief jn() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_jn(int n, double x) {
|
|
#if Q_CC_MSVC
|
|
return _jn(n,x);
|
|
#else
|
|
return jn(n,x);
|
|
#endif
|
|
}
|
|
|
|
/*! \brief yn() function (without compiler issues)
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
*/
|
|
inline double jkqtp_yn(int n, double x) {
|
|
#if Q_CC_MSVC
|
|
return _yn(n,x);
|
|
#else
|
|
return yn(n,x);
|
|
#endif
|
|
}
|
|
|
|
/** \brief calculate the distance between two QPointF points
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
*/
|
|
inline double jkqtp_distance(const QPointF& p1, const QPointF& p2){
|
|
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
|
|
}
|
|
|
|
/** \brief calculate the distance between two QPoint points
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
*/
|
|
inline double jkqtp_distance(const QPoint& p1, const QPoint& p2){
|
|
return sqrt(jkqtp_sqr<double>(p1.x()-p2.x())+jkqtp_sqr<double>(p1.y()-p2.y()));
|
|
}
|
|
|
|
/** \brief check whether the dlotaing point number is OK (i.e. non-inf, non-NAN)
|
|
* \ingroup jkqtptools_math_basic
|
|
*/
|
|
template <typename T>
|
|
inline bool JKQTPIsOKFloat(T v) {
|
|
return std::isfinite(v)&&(!std::isinf(v))&&(!std::isnan(v));
|
|
}
|
|
|
|
/** \brief evaluates a gaussian propability density function
|
|
* \ingroup jkqtptools_math_basic
|
|
*
|
|
* \f[ f(x,\mu, \sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}\cdot\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \f]
|
|
*/
|
|
inline double jkqtp_gaussdist(double x, double mu=0.0, double sigma=1.0) {
|
|
return exp(-0.5*jkqtp_sqr(x-mu)/jkqtp_sqr(sigma))/sqrt(2.0*JKQTPSTATISTICS_PI*sigma*sigma);
|
|
}
|
|
|
|
/*! \brief evaluate a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ with \f$ p_i \f$ taken from the range \a firstP ... \a lastP
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
\tparam PolyItP iterator for the polynomial coefficients
|
|
\param x where to evaluate
|
|
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
|
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
|
\return value of polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ at location \a x
|
|
|
|
*/
|
|
template <class PolyItP>
|
|
inline double jkqtp_polyEval(double x, PolyItP firstP, PolyItP lastP) {
|
|
double v=0.0;
|
|
double xx=1.0;
|
|
for (auto itP=firstP; itP!=lastP; ++itP) {
|
|
v=v+(*itP)*xx;
|
|
xx=xx*x;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/*! \brief a C++-functor, which evaluates a polynomial
|
|
\ingroup jkqtptools_math_basic
|
|
*/
|
|
struct JKQTCOMMON_LIB_EXPORT JKQTPPolynomialFunctor {
|
|
std::vector<double> P;
|
|
template <class PolyItP>
|
|
inline JKQTPPolynomialFunctor(PolyItP firstP, PolyItP lastP) {
|
|
for (auto itP=firstP; itP!=lastP; ++itP) {
|
|
P.push_back(*itP);
|
|
}
|
|
}
|
|
inline double operator()(double x) const { return jkqtp_polyEval(x, P.begin(), P.end()); }
|
|
|
|
};
|
|
|
|
/*! \brief returns a C++-functor, which evaluates a polynomial
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
\tparam PolyItP iterator for the polynomial coefficients
|
|
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
|
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
|
*/
|
|
template <class PolyItP>
|
|
inline std::function<double(double)> jkqtp_generatePolynomialModel(PolyItP firstP, PolyItP lastP) {
|
|
return JKQTPPolynomialFunctor(firstP, lastP);
|
|
}
|
|
|
|
/*! \brief Generates a LaTeX string for the polynomial model with the coefficients \a firstP ... \a lastP
|
|
\ingroup jkqtptools_math_basic
|
|
|
|
\tparam PolyItP iterator for the polynomial coefficients
|
|
\param firstP points to the first polynomial coefficient \f$ p_1 \f$ (i.e. the offset with \f$ x^0 \f$ )
|
|
\param lastP points behind the last polynomial coefficient \f$ p_P \f$
|
|
*/
|
|
template <class PolyItP>
|
|
QString jkqtp_polynomialModel2Latex(PolyItP firstP, PolyItP lastP) {
|
|
QString str="f(x)=";
|
|
size_t p=0;
|
|
for (auto itP=firstP; itP!=lastP; ++itP) {
|
|
if (p==0) str+=jkqtp_floattolatexqstr(*itP, 3);
|
|
else {
|
|
if (*itP>=0) str+="+";
|
|
str+=QString("%2{\\cdot}x^{%1}").arg(p).arg(jkqtp_floattolatexqstr(*itP, 3));
|
|
}
|
|
p++;
|
|
}
|
|
return str;
|
|
}
|
|
|
|
#endif // jkqtpmathtools_H_INCLUDED
|