mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2025-01-15 02:02:10 +08:00
169 lines
5.8 KiB
C++
169 lines
5.8 KiB
C++
/*
|
|
Copyright (c) 2008-2022 Jan W. Krieger (<jan@jkrieger.de>)
|
|
|
|
last modification: $LastChangedDate$ (revision $Rev$)
|
|
|
|
This software is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License (LGPL) as published by
|
|
the Free Software Foundation, either version 2.1 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License (LGPL) for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License (LGPL)
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef JKQTPSTATPOLY_H_INCLUDED
|
|
#define JKQTPSTATPOLY_H_INCLUDED
|
|
|
|
#include <stdint.h>
|
|
#include <cmath>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <cfloat>
|
|
#include <ostream>
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
#include "jkqtcommon_statistics_and_math/jkqtcommon_statistics_and_math_imexport.h"
|
|
#include "jkqtcommon_statistics_and_math/jkqtplinalgtools.h"
|
|
#include "jkqtcommon_statistics_and_math/jkqtparraytools.h"
|
|
#include "jkqtcommon/jkqtpdebuggingtools.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*! \brief fits (in a least-squares sense) a polynomial \f$ f(x)=\sum\limits_{i=0}^Pp_ix^i \f$ of order P to a set of N data pairs \f$ (x_i,y_i) \f$
|
|
\ingroup jkqtptools_math_statistics_poly
|
|
|
|
\tparam InputItX standard iterator type of \a firstX and \a lastX.
|
|
\tparam InputItY standard iterator type of \a firstY and \a lastY.
|
|
\tparam OutputItP output iterator for the polynomial coefficients
|
|
\param firstX iterator pointing to the first item in the x-dataset to use \f$ x_1 \f$
|
|
\param lastX iterator pointing behind the last item in the x-dataset to use \f$ x_N \f$
|
|
\param firstY iterator pointing to the first item in the y-dataset to use \f$ y_1 \f$
|
|
\param lastY iterator pointing behind the last item in the y-dataset to use \f$ y_N \f$
|
|
\param P degree of the polynomial (P>=N !!!)
|
|
\param[out] firstRes Iterator (of type \a OutputItP ), which receives the (P+1)-entry vector with the polynomial coefficients \f$ p_i \f$
|
|
|
|
This function uses jkqtpstatLinSolve() to solve the system of equations
|
|
\f[ \begin{bmatrix} y_1\\ y_2\\ y_3 \\ \vdots \\ y_n \end{bmatrix}= \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^P \\ 1 & x_2 & x_2^2 & \dots & x_2^P\\ 1 & x_3 & x_3^2 & \dots & x_3^P \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^P \end{bmatrix} \begin{bmatrix} p_0\\ p_1\\ p_2\\ \vdots \\ p_P \end{bmatrix} \f]
|
|
\f[ \vec{y}=V\vec{p}\ \ \ \ \ \Rightarrow\ \ \ \ \ \vec{p}=(V^TV)^{-1}V^T\vec{y} \f]
|
|
|
|
\image html datastore_regression_polynom.png
|
|
|
|
\see https://en.wikipedia.org/wiki/Polynomial_regression
|
|
*/
|
|
template <class InputItX, class InputItY, class OutputItP>
|
|
inline void jkqtpstatPolyFit(InputItX firstX, InputItX lastX, InputItY firstY, InputItY lastY, size_t P, OutputItP firstRes) {
|
|
{
|
|
const int Nx=std::distance(firstX,lastX);
|
|
const int Ny=std::distance(firstY,lastY);
|
|
JKQTPASSERT(Nx>1 && Ny>1);
|
|
}
|
|
|
|
size_t N=0;
|
|
|
|
std::vector<double> X,Y;
|
|
auto itX=firstX;
|
|
auto itY=firstY;
|
|
for (; itX!=lastX && itY!=lastY; ++itX, ++itY) {
|
|
const double fit_x=jkqtp_todouble(*itX);
|
|
const double fit_y=jkqtp_todouble(*itY);
|
|
if (JKQTPIsOKFloat(fit_x) && JKQTPIsOKFloat(fit_y)) {
|
|
X.push_back(fit_x);
|
|
Y.push_back(fit_y);
|
|
N++;
|
|
}
|
|
}
|
|
|
|
// build Vandermonde matrix V
|
|
std::vector<double> V;
|
|
V.resize(N*(P+1));
|
|
for (size_t l=0; l<N; l++) {
|
|
V[jkqtplinalgMatIndex(l,0,P+1)]=1.0;
|
|
double x=X[l];
|
|
const double xx=x;
|
|
for (size_t c=1; c<P+1; c++) {
|
|
V[jkqtplinalgMatIndex(l,c,P+1)]=x;
|
|
x=x*xx;
|
|
}
|
|
}
|
|
#ifdef STATISTICS_TOOLS_DEBUG_statisticsPolyFit
|
|
std::cout<<"V = \n";
|
|
jkqtplinalgPrintMatrix(V.data(),N,P+1);
|
|
std::cout<<"\n";
|
|
#endif
|
|
|
|
// calculate V^T
|
|
std::vector<double> VT=V;
|
|
jkqtplinalgTransposeMatrix(VT.data(), static_cast<long>(N), static_cast<long>(P+1));
|
|
|
|
#ifdef STATISTICS_TOOLS_DEBUG_statisticsPolyFit
|
|
std::cout<<"V^T = \n";
|
|
jkqtplinalgPrintMatrix(VT.data(),P+1,N);
|
|
std::cout<<"\n";
|
|
#endif
|
|
|
|
// calculate V^T*V
|
|
std::vector<double> VTV;
|
|
VTV.resize((P+1)*(P+1));
|
|
jkqtplinalgMatrixProduct(VT.data(), static_cast<long>(P+1), static_cast<long>(N), V.data(), static_cast<long>(N), static_cast<long>(P+1), VTV.data());
|
|
|
|
#ifdef STATISTICS_TOOLS_DEBUG_statisticsPolyFit
|
|
std::cout<<"V^T*V = \n";
|
|
jkqtplinalgPrintMatrix(VTV.data(),P+1,P+1);
|
|
std::cout<<"\n";
|
|
#endif
|
|
|
|
// calculate V^T*y
|
|
std::vector<double> VTY;
|
|
VTY.resize(P+1);
|
|
jkqtplinalgMatrixProduct(VT.data(), static_cast<long>(P+1), static_cast<long>(N), Y.data(), static_cast<long>(N), 1, VTY.data());
|
|
|
|
#ifdef STATISTICS_TOOLS_DEBUG_statisticsPolyFit
|
|
std::cout<<"V^T*y = \n";
|
|
jkqtplinalgPrintMatrix(VTY.data(),P+1,1);
|
|
std::cout<<"\n";
|
|
#endif
|
|
|
|
// solve V^T*y = V^T*V*p
|
|
const bool ok=jkqtplinalgLinSolve(VTV.data(), VTY.data(), static_cast<long>(P+1));
|
|
|
|
if (ok) {
|
|
auto itR=firstRes;
|
|
for (size_t p=0; p<P+1; p++) {
|
|
*itR=VTY[p];
|
|
++itR;
|
|
}
|
|
} else {
|
|
throw std::runtime_error("jkqtplinalgLinSolve() didn't return a result!");
|
|
}
|
|
|
|
#ifdef STATISTICS_TOOLS_DEBUG_statisticsPolyFit
|
|
std::cout<<"result_out = \n";
|
|
jkqtplinalgPrintMatrix(result_out,P+1,1);
|
|
std::cout<<"\n";
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif // JKQTPSTATPOLY_H_INCLUDED
|
|
|
|
|