[Back to JKQTPlotter main page](https://github.com/jkriege2/JKQtPlotter/) # JKQtPlotter ## Plotting Mathematical Functions as Line Graphs ### Basics This project (see `./test/simpletest_functionplot/`) demonstrates how to plot mathematical functions as line graphs. The functions may be defined as static C functions, C++ functors or c++ inline functions. See [test/simpletest_parsedfunctionplot](https://github.com/jkriege2/JKQtPlotter/tree/master/test/simpletest_parsedfunctionplot) for an example of how to use an internal equation parser provided with JKQtPlotter instead of directly defining functions. ### Simple C++ inline function The first example shows how to plot a C++ inline function: ```c++ JKQTPxFunctionLineGraph* func1=new JKQTPxFunctionLineGraph(plot); func1->set_plotFunction([](double x) { return 0.2*x*x-0.015*x*x*x; }); func1->set_title("C++-inline function $0.2x^2-0.015x^3$"); plot->addGraph(func1); ``` ### Simple C++ inline function with parameters In any such plot function, you can also use parameters, provided via the second parameter. Usually these are "internal parameters", defined by `func2->set_paramsV(p0, p1, ...)`: ```c++ JKQTPxFunctionLineGraph* func2=new JKQTPxFunctionLineGraph(plot); func2->set_plotFunction([](double x, void* params) { QVector* p=static_cast*>(params); return p->at(0)*sin(2.0*M_PI*x*p->at(1)); }); // here we set the parameters p0, p1 func2->set_paramsV(5, 0.2); func2->set_title("C++-inline function with int. params $p_0\\cdot\\sin(x*2.0*\\pi\\cdot p_1)$"); plot->addGraph(func2); ``` ... but generally any pointer can be used as parameter (the set by `set_parameter(static_cast(myDataObject))`): ```c++ JKQTPxFunctionLineGraph* func3=new JKQTPxFunctionLineGraph(plot); func3->set_plotFunction([](double x, void* params) { QMap* p=static_cast*>(params); return p->value("amplitude")*sin(2.0*M_PI*x*p->value("frequency")); }); // here we set the parameters p0, p1 QMap params3; params3["amplitude"]=-3; params3["frequency"]=0.3; func3->set_params(¶ms3); func3->set_title("C++-inline function with ext. params $p_0\\cdot\\sin(x*2.0*\\pi\\cdot p_1)$"); plot->addGraph(func3); ``` ### C++ functors as plot functions You can also use C++ functors (or function objects): ```c++ struct SincSqr { public: inline SincSqr(double amplitude): a(amplitude) {} inline double operator()(double x) { return a*sin(x)*sin(x)/x/x; } private: double a; }; // ... JKQTPxFunctionLineGraph* func4=new JKQTPxFunctionLineGraph(plot); func4->set_plotFunction(SincSqr(-8)); func4->set_title("C++ functor $-8*\\sin^2(x)/x^2$"); plot->addGraph(func4); ``` ### Static C functions You can also plot simple static C functions: ```c++ double sinc(double x) { return 10.0*sin(x)/x; } // ... JKQTPxFunctionLineGraph* func5=new JKQTPxFunctionLineGraph(plot); func5->set_plotFunction(&sinc); func5->set_title("static C function $10*\\sin(x)/x$"); plot->addGraph(func5); ``` ### Predefined "special" functions Finally `JKQTPxFunctionLineGraph` provides a small set of special functions (polynomial `p0+p1*x+p2*x^2+...`, exponential `p0+p1*exp(x/p2)`, power-law `p0+p1*x^p2`, ...), which are parametrized from the internal or external parameters: ```c++ JKQTPxFunctionLineGraph* func6=new JKQTPxFunctionLineGraph(plot); func6->setSpecialFunction(JKQTPxFunctionLineGraph::Line); // here we set offset p0=-1 and slope p1=1.5 of the line p0+p1*x func6->set_paramsV(-1,1.5); func6->set_title("special function: linear"); plot->addGraph(func6); ``` To demonstrate how to use parameters from a datastore column, have a look at the next example. It is derived from the special-function plot above, but adds a line with a different offset and slope and reads the parameters from a datastore column `paramCol`, which is initialized from the vector `params`: ```c++ JKQTPxFunctionLineGraph* func7=new JKQTPxFunctionLineGraph(plot); func7->setSpecialFunction(JKQTPxFunctionLineGraph::Line); // here we set offset p0=1 and slope p1=-1.5 of the line p0+p1*x by adding these into a column // in the internal datastore and then set that column as parameterColumn for the function graph QVector params; params << /*p0=*/1 << /*p1=*/-1.5; size_t paramCol=plot->getDatastore()->addCopiedColumn(params); func7->set_parameterColumn(paramCol); func7->set_title("special function: linear"); plot->addGraph(func7); ``` ### Screenshot This code snippets above result in a plot like this: ![jkqtplotter_simpletest_functionplot](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_functionplot.png) ### Notes Note that all the different variants to provide parameters can be used with all types of functions! Also see the example [Plotting Parsed Mathematical Functions as Line Graphs](https://github.com/jkriege2/JKQtPlotter/tree/master/test/simpletest_parsedfunctionplot) for details on how the actual plotting algorithm works. That example also shows how to define a function as a string, which is then parsed and evaluated by an expression parser library embedded in JKQtPlotter. All examples above use the graph class `JKQTPxFunctionLineGraph`, which plots a function `y=f(x)`. If you want to plot a function `x=f(y)`, you can use the class `JKQTPyFunctionLineGraph` instead. If in the examples above, we exchange all `JKQTPxFunctionLineGraph` for `JKQTPyFunctionLineGraph`, the graphs will be rotated by 90 degree, as all functions are interpreted as `x=f(y)`: ![jkqtplotter_simpletest_functionplot_fy](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/jkqtplotter_simpletest_functionplot_fy.png) [Back to JKQTPlotter main page](https://github.com/jkriege2/JKQtPlotter/)