/* Copyright (c) 2008-2024 Jan W. Krieger () This software is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation, either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License (LGPL) for more details. You should have received a copy of the GNU Lesser General Public License (LGPL) along with this program. If not, see . */ #include "jkqtplotter/graphs/jkqtpgeolines.h" #include "jkqtplotter/jkqtpbaseplotter.h" #include "jkqtplotter/jkqtplotter.h" #include "jkqtcommon/jkqtpgeometrytools.h" #include #include #include #define SmallestGreaterZeroCompare_xvsgz() if ((xvsgz>10.0*DBL_MIN)&&((smallestGreaterZero<10.0*DBL_MIN) || (xvsgzgetPlotter(), x1,y1,x2,y2) { } JKQTPGeoLine::JKQTPGeoLine(JKQTBasePlotter *parent, const QPointF &p1, const QPointF &p2): JKQTPGeoLine(parent, p1.x(), p1.y(), p2.x(), p2.y()) { } JKQTPGeoLine::JKQTPGeoLine(JKQTPlotter *parent, const QPointF &p1, const QPointF &p2): JKQTPGeoLine(parent, p1.x(), p1.y(), p2.x(), p2.y()) { } JKQTPGeoLine::JKQTPGeoLine(JKQTBasePlotter *parent, const QLineF &line): JKQTPGeoLine(parent, line.x1(), line.y1(), line.x2(), line.y2()) { } JKQTPGeoLine::JKQTPGeoLine(JKQTPlotter *parent, const QLineF &line): JKQTPGeoLine(parent, line.x1(), line.y1(), line.x2(), line.y2()) { } bool JKQTPGeoLine::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) { minx=qMin(x1, x2); maxx=qMax(x1, x2); smallestGreaterZero=0; double xvsgz; xvsgz=x1; SmallestGreaterZeroCompare_xvsgz(); xvsgz=x2; SmallestGreaterZeroCompare_xvsgz(); return true; } bool JKQTPGeoLine::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) { miny=qMin(y1, y2); maxy=qMax(y1, y2); smallestGreaterZero=0; double xvsgz; xvsgz=y1; SmallestGreaterZeroCompare_xvsgz(); xvsgz=y2; SmallestGreaterZeroCompare_xvsgz(); return true; } void JKQTPGeoLine::draw(JKQTPEnhancedPainter& painter) { clearHitTestData(); reserveHitTestData(2); painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); painter.setBrush(getLineColor()); QPointF xx1(transformX(x1),transformY(y1)); QPointF xx2(transformX(x2), transformY(y2)); if ( QLineF(xx1, xx2).length()>0) { if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) { // for linear axes, we can simply draw a line const double angle1=atan2(xx2.y()-xx1.y(), xx2.x()-xx1.x()); const double angle2=atan2(xx1.y()-xx2.y(), xx1.x()-xx2.x()); QPointF lx1=xx1, lx2=xx2; JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF()), &lx1); JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()), &lx2); // draw corrected line painter.drawLine(QLineF(lx1, lx2)); } else { QLineF line(QPointF(x1,y1), QPointF(x2,y2)); const double xmin=getXAxis()->getMin(); const double xmax=getXAxis()->getMax(); const double ymin=getYAxis()->getMin(); const double ymax=getYAxis()->getMax(); const QRectF bbox(QPointF(xmin, ymin), QPointF(xmax, ymax)); bool drawHead=bbox.contains(line.p2()); bool drawTail=bbox.contains(line.p1()); if (JKQTPClipLine(line, bbox)) { // for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space) // and transform each node to draw the corresponding non-linear curve in pixel-space! auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1); QVector points=JKQTPSplitLineIntoPoints(line, fTransform); points=JKQTPSimplyfyLineSegemnts(points); if (points.size()>1) { xx1=points[0]; QPointF xx1p=points[1]; xx2=points[points.size()-1]; QPointF xx2p=points[points.size()-2]; //QPointF lx1=xx1, lx2=xx2; const double angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x()); const double angle2=atan2(xx2p.y()-xx2.y(), xx2p.x()-xx2.x()); if (drawTail) JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF()));//, &lx1); if (drawHead) JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF()));//, &lx2); //points[0]=lx1; //points[points.size()-1]=lx2; painter.drawPolylineFast(points.data(), points.size()); } } } addHitTestData(x1, y1); addHitTestData(x2, y2); } } void JKQTPGeoLine::setX1(double __value) { this->x1 = __value; } double JKQTPGeoLine::getX1() const { return this->x1; } void JKQTPGeoLine::setY1(double __value) { this->y1 = __value; } double JKQTPGeoLine::getY1() const { return this->y1; } void JKQTPGeoLine::setX2(double __value) { this->x2 = __value; } double JKQTPGeoLine::getX2() const { return this->x2; } void JKQTPGeoLine::setY2(double __value) { this->y2 = __value; } double JKQTPGeoLine::getY2() const { return this->y2; } QPointF JKQTPGeoLine::getP1() const { return QPointF(x1,y1); } void JKQTPGeoLine::setP1(const QPointF &p) { x1=p.x(); y1=p.y(); } QPointF JKQTPGeoLine::getP2() const { return QPointF(x2,y2); } void JKQTPGeoLine::setP2(const QPointF &p) { x2=p.x(); y2=p.y(); } QLineF JKQTPGeoLine::getLine() const { return QLineF(getP1(), getP2()); } void JKQTPGeoLine::setLine(const QLineF &line) { x1=line.p1().x(); x2=line.p2().x(); y1=line.p1().y(); y2=line.p2().y(); } JKQTPGeoArrow::JKQTPGeoArrow(JKQTBasePlotter* parent, double x1, double y1, double x2, double y2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle): JKQTPGeoLine(parent, x1,y1,x2,y2) { setHeadDecoratorStyle(headStyle); setTailDecoratorStyle(tailStyle); } JKQTPGeoArrow::JKQTPGeoArrow(JKQTPlotter* parent, double x1, double y1, double x2, double y2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle): JKQTPGeoArrow(parent->getPlotter(), x1,y1,x2,y2, headStyle, tailStyle) { } JKQTPGeoArrow::JKQTPGeoArrow(JKQTBasePlotter *parent, const QPointF &p1, const QPointF &p2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle): JKQTPGeoArrow(parent, p1.x(),p1.y(),p2.x(),p2.y(), headStyle, tailStyle) { } JKQTPGeoArrow::JKQTPGeoArrow(JKQTPlotter *parent, const QPointF &p1, const QPointF &p2, JKQTPLineDecoratorStyle headStyle, JKQTPLineDecoratorStyle tailStyle): JKQTPGeoArrow(parent->getPlotter(), p1.x(),p1.y(),p2.x(),p2.y(), headStyle, tailStyle) { } JKQTPGeoInfiniteLine::JKQTPGeoInfiniteLine(JKQTBasePlotter* parent, double x, double y, double dx, double dy): JKQTPGeoBaseDecoratedHeadLine(parent) { this->x=x; this->y=y; this->dx=dx; this->dy=dy; this->two_sided=false; } JKQTPGeoInfiniteLine::JKQTPGeoInfiniteLine(JKQTPlotter* parent, double x, double y, double dx, double dy): JKQTPGeoInfiniteLine(parent->getPlotter(), x, y, dx, dy) { } bool JKQTPGeoInfiniteLine::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) { minx=x; maxx=x; smallestGreaterZero=0; if (x>10.0*DBL_MIN) smallestGreaterZero=x; return true; } bool JKQTPGeoInfiniteLine::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) { miny=y; maxy=y; smallestGreaterZero=0; if (y>10.0*DBL_MIN) smallestGreaterZero=y; return true; } void JKQTPGeoInfiniteLine::draw(JKQTPEnhancedPainter& painter) { clearHitTestData(); reserveHitTestData(2); double xmin=getXAxis()->getMin(); double xmax=getXAxis()->getMax(); double ymin=getYAxis()->getMin(); double ymax=getYAxis()->getMax(); QRectF bbox(QPointF(xmin, ymin), QPointF(xmax, ymax)); bool doDraw=false; double x2=x, y2=y; double x1=x, y1=y; // normalize lengh of direction double dl=sqrt(dx*dx+dy*dy); dx=dx/dl; dy=dy/dl; // first catch cases where we are parallel to one coordinate axis if (dy==0) { doDraw=((y>=ymin)&&(y<=ymax)); x1=xmin; x2=xmax; if (!two_sided) { if ((dx>0)&&(x>xmin)) { x1=x; } else if ((dx<0)&&(x=xmin)&&(x<=xmax)); y1=ymin; y2=ymax; if (!two_sided) { if ((dy>0)&&(y>ymin)) { y1=y; } else if ((dy<0)&&(yxmin)&&(xymin use it t1=tymin; if (two_sided) { doDraw=true; } else if (t1>0) { doDraw=true; } else { t1=0; } } else if (xymin0) { doDraw=true; } else { t1=0; } } else if (xymin>xmax) { //(xymin,ymin) is on the right, next to the rectangle, so we have to intersect with x=xmax t1=(xmax-x)/dx; if (two_sided) { doDraw=true; } else if (t1>0) { doDraw=true; } else { t1=0; } } if ((xymax>xmin)&&(xymax use it t2=tymax; if (two_sided) { doDraw=true; } else if (t2>0) { doDraw=true; } else { t2=0; } } else if (xymax0) { doDraw=true; } else { t2=0; } } else if (xymax>xmax) { //(xymax,ymax) is on the right, next to the rectangle, so we have to intersect with x=xmax t2=(xmax-x)/dx; if (two_sided) { doDraw=true; } else if (t2>0) { doDraw=true; } else { t2=0; } } x1=x+t1*dx; y1=y+t1*dy; x2=x+t2*dx; y2=y+t2*dy; } if (doDraw) { painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); QLineF line(QPointF(transformX(x1), transformY(y1)), QPointF(transformX(x2), transformY(y2))); if (line.length()>0) { QPointF xx1; double angle1=0; if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) { painter.drawLine(line); xx1=QPointF(transformX(x),transformY(y)); angle1=atan2(line.dy(), line.dx()); } else { // for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space) // and transform each node to draw the corresponding non-linear curve in pixel-space! auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1); QVector points=JKQTPSplitLineIntoPoints(QLineF(x1,y1,x2,y2), fTransform); points=JKQTPSimplyfyLineSegemnts(points); if (points.size()>1) { xx1=points[0]; const QPointF xx1p=points[1]; angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x()); painter.drawPolylineFast(points.data(), points.size()); } } // draw line-end decorator if (two_sided==false && x>=xmin && x<=xmax && y>=ymin && y<=ymax) { painter.save(); auto __finalpainttwosided=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); painter.setBrush(getLineColor()); JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF())); } addHitTestData(x, y, formatHitTestDefaultLabel(x,y)+ QString(", \\ensuremath{\\mathrm{\\mathbf{d}}y/\\mathrm{\\mathbf{d}}x\\;=\\;%1/%2\\;=\\;%3\\;=\\;%4\\degree}").arg(yFloatToString(dy)).arg(xFloatToString(dx)).arg(jkqtp_floattolatexqstr(dy/dx, 3)).arg(jkqtp_floattolatexqstr(atan2(dy,dx), 1))); addHitTestData(x1, y1); addHitTestData(x2, y2); } } } void JKQTPGeoInfiniteLine::setX(double __value) { this->x = __value; } double JKQTPGeoInfiniteLine::getX() const { return this->x; } void JKQTPGeoInfiniteLine::setY(double __value) { this->y = __value; } double JKQTPGeoInfiniteLine::getY() const { return this->y; } void JKQTPGeoInfiniteLine::setDx(double __value) { this->dx = __value; } double JKQTPGeoInfiniteLine::getDx() const { return this->dx; } void JKQTPGeoInfiniteLine::setDy(double __value) { this->dy = __value; } double JKQTPGeoInfiniteLine::getDy() const { return this->dy; } void JKQTPGeoInfiniteLine::setTwoSided(bool __value) { this->two_sided = __value; } bool JKQTPGeoInfiniteLine::getTwoSided() const { return this->two_sided; } QPointF JKQTPGeoInfiniteLine::getP() const { return QPointF(x,y); } void JKQTPGeoInfiniteLine::setP(const QPointF &p) { x=p.x(); y=p.y(); } JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTBasePlotter* parent, const QVector& points): JKQTPGeoBaseDecoratedLine(parent) { this->points=points; setHeadDecoratorStyle(JKQTPNoDecorator); setTailDecoratorStyle(JKQTPNoDecorator); } JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTPlotter* parent, const QVector& points): JKQTPGeoPolyLines(parent->getPlotter(), points) { } JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTBasePlotter *parent): JKQTPGeoBaseDecoratedLine(parent) { } JKQTPGeoPolyLines::JKQTPGeoPolyLines(JKQTPlotter *parent): JKQTPGeoPolyLines(parent->getPlotter()) { } bool JKQTPGeoPolyLines::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) { minx=0; maxx=0; smallestGreaterZero=0; if (points.size()>0) { minx=points[0].x(); maxx=points[0].x(); for (int i=1; imaxx) maxx=x; if (x0) { miny=points[0].y(); maxy=points[0].y(); for (int i=1; imaxy) maxy=y; if (y=2) { reserveHitTestData(points.size()); double angle1=0, angle2=0; QPointF xx1, xx2; bool doDrawDecorator=false; painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); painter.setBrush(getLineColor()); if ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis())) { QVector path=transform(points); angle1=atan2(path[1].y()-path[0].y(), path[1].x()-path[0].x()); angle2=atan2(path[path.size()-2].y()-path[path.size()-1].y(), path[path.size()-2].x()-path[path.size()-1].x()); xx1=path[0]; xx2=path[path.size()-1]; // draw corrected line painter.drawPolylineFast(path.data(), path.size()); doDrawDecorator=true; } else { // for non-linear axes, a line might not be drawn as a line, so we need to segment the line (i.e. linear function in coordinate space) // and transform each node to draw the corresponding non-linear curve in pixel-space! auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1); QVector points_poly=JKQTPSplitPolylineIntoPoints(points, fTransform); points_poly=JKQTPSimplyfyLineSegemnts(points_poly); if (points_poly.size()>1) { xx1=points_poly[0]; const QPointF xx1p=points_poly[1]; angle1=atan2(xx1p.y()-xx1.y(), xx1p.x()-xx1.x()); xx2=points_poly[points_poly.size()-1]; const QPointF xx2p=points_poly[points_poly.size()-2]; angle2=atan2(xx2p.y()-xx2.y(), xx2p.x()-xx2.x()); painter.drawPolylineFast(points_poly.data(), points_poly.size()); doDrawDecorator=true; } } // potentially draw line-end decorators/arrows if (doDrawDecorator) { JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF())); JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF())); } for (const auto& p:points) { addHitTestData(p.x(), p.y()); } } } void JKQTPGeoPolyLines::setPoints(const QVector &__value) { this->points = __value; } QVector JKQTPGeoPolyLines::getPoints() const { return this->points; } void JKQTPGeoPolyLines::appendPoint(const QPointF &p) { points.append(p); } void JKQTPGeoPolyLines::appendPoint(const double x, const double y) { points.append(QPointF(x, y)); } int JKQTPGeoPolyLines::getPointCount() const { return points.size(); } const QPointF &JKQTPGeoPolyLines::getPoint(int i) const { return points[i]; } QPointF &JKQTPGeoPolyLines::getPoint(int i) { return points[i]; } void JKQTPGeoPolyLines::setPoint(int i, const QPointF &point) { points[i]=point; } void JKQTPGeoPolyLines::removePoint(int i) { points.remove(i); } QVector::iterator JKQTPGeoPolyLines::pointsBegin() { return points.begin(); } QVector::iterator JKQTPGeoPolyLines::pointsEnd() { return points.end(); } QVector::const_iterator JKQTPGeoPolyLines::pointsCBegin() const { return points.cbegin(); } QVector::const_iterator JKQTPGeoPolyLines::pointsCEnd() const { return points.cend(); } JKQTPGeoArc::JKQTPGeoArc(JKQTBasePlotter* parent, double x, double y, double width, double height, double angleStart, double angleStop): JKQTPGeoBaseLine(parent) { this->angleStart=angleStart; this->angleStop=angleStop; this->x=x; this->y=y; this->width=width; this->height=height; this->angle=0; } JKQTPGeoArc::JKQTPGeoArc(JKQTPlotter* parent, double x, double y, double width, double height, double angleStart, double angleStop): JKQTPGeoArc(parent->getPlotter(), x, y, width, height, angleStart, angleStop) { } void JKQTPGeoArc::draw(JKQTPEnhancedPainter& painter) { auto fTransform=std::bind([](const JKQTPGeometricPlotElement* plot, const QPointF& p) { return plot->transform(p); }, this, std::placeholders::_1); const QPolygonF rect=JKQTPSplitEllipseIntoPoints(fTransform, x,y,width/2.0, height/2.0,angleStart,angleStop, angle); painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); painter.drawPolylineFast(rect); } void JKQTPGeoArc::setAngleStart(double __value) { this->angleStart = __value; } double JKQTPGeoArc::getAngleStart() const { return this->angleStart; } void JKQTPGeoArc::setAngleStop(double __value) { this->angleStop = __value; } double JKQTPGeoArc::getAngleStop() const { return this->angleStop; } void JKQTPGeoArc::setX(double __value) { this->x = __value; } double JKQTPGeoArc::getX() const { return this->x; } void JKQTPGeoArc::setY(double __value) { this->y = __value; } double JKQTPGeoArc::getY() const { return this->y; } QPointF JKQTPGeoArc::getCenter() const { return QPointF(x, y); } void JKQTPGeoArc::setCenter(const QPointF ¢er) { x=center.x(); y=center.y(); } void JKQTPGeoArc::setWidth(double __value) { this->width = __value; } double JKQTPGeoArc::getWidth() const { return this->width; } void JKQTPGeoArc::setHeight(double __value) { this->height = __value; } double JKQTPGeoArc::getHeight() const { return this->height; } QSizeF JKQTPGeoArc::getSize() const { return QSizeF(width,height); } void JKQTPGeoArc::setSize(const QSizeF &size) { width=size.width(); height=size.height(); } void JKQTPGeoArc::setAngle(double __value) { this->angle = __value; } double JKQTPGeoArc::getAngle() const { return this->angle; } bool JKQTPGeoArc::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) { QPolygonF rect; rect=QPolygonF(JKQTPSplitEllipseIntoPoints(x,y,width/2.0, height/2.0,angleStart,angleStop,angle, 180)); minx=rect.boundingRect().left(); maxx=rect.boundingRect().right(); if (minx>maxx) std::swap(minx, maxx); smallestGreaterZero=0; double xvsgz; xvsgz=minx; SmallestGreaterZeroCompare_xvsgz(); xvsgz=maxx; SmallestGreaterZeroCompare_xvsgz(); return true; } bool JKQTPGeoArc::getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) { QPolygonF rect; rect=QPolygonF(JKQTPSplitEllipseIntoPoints(x,y,width/2.0, height/2.0,angleStart,angleStop,angle, 180)); miny=rect.boundingRect().bottom(); maxy=rect.boundingRect().top(); if (miny>maxy) std::swap(miny, maxy); smallestGreaterZero=0; double xvsgz; xvsgz=miny; SmallestGreaterZeroCompare_xvsgz(); xvsgz=maxy; SmallestGreaterZeroCompare_xvsgz(); return true; } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTBasePlotter *parent, const QPointF &start, const QPointF &control1, const QPointF &end): JKQTPGeoBaseDecoratedLine(parent) { setQuad(start,control1,end); setHeadDecoratorStyle(JKQTPNoDecorator); setTailDecoratorStyle(JKQTPNoDecorator); } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTPlotter *parent, const QPointF &start, const QPointF &control1, const QPointF &end): JKQTPGeoBezierCurve(parent->getPlotter(),start,control1,end) { } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTBasePlotter *parent, const QPointF &start, const QPointF &control1, const QPointF &control2, const QPointF &end): JKQTPGeoBaseDecoratedLine(parent) { setCubic(start,control1,control2,end); setHeadDecoratorStyle(JKQTPNoDecorator); setTailDecoratorStyle(JKQTPNoDecorator); } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTPlotter *parent, const QPointF &start, const QPointF &control1, const QPointF &control2, const QPointF &end): JKQTPGeoBezierCurve(parent->getPlotter(),start,control1,control2,end) { } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTBasePlotter *parent): JKQTPGeoBaseDecoratedLine(parent) { setHeadDecoratorStyle(JKQTPNoDecorator); setTailDecoratorStyle(JKQTPNoDecorator); } JKQTPGeoBezierCurve::JKQTPGeoBezierCurve(JKQTPlotter *parent): JKQTPGeoBezierCurve(parent->getPlotter()) { } bool JKQTPGeoBezierCurve::getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) { minx=0; maxx=0; smallestGreaterZero=0; if (points.size()>0) { minx=points[0].x(); maxx=points[0].x(); for (int i=1; imaxx) maxx=x; if (x0) { miny=points[0].y(); maxy=points[0].y(); for (int i=1; imaxy) maxy=y; if (y=2) { reserveHitTestData(points.size()); double angle1=0, angle2=0; QPointF xx1, xx2; bool doDrawDecorator=false; painter.save(); auto __finalpaint=JKQTPFinally([&painter]() {painter.restore();}); painter.setPen(getLinePen(painter, parent)); painter.setBrush(Qt::NoBrush); if ((points.size()<=4) && ((getDrawMode()==DrawAsGraphicElement) || (getXAxis()->isLinearAxis() && getYAxis()->isLinearAxis()))) { const QVector path=transform(points); angle1=atan2(path[1].y()-path[0].y(), path[1].x()-path[0].x()); angle2=atan2(path[path.size()-2].y()-path[path.size()-1].y(), path[path.size()-2].x()-path[path.size()-1].x()); xx1=path[0]; xx2=path[path.size()-1]; QPainterPath ppath; if (path.size()>0) ppath.moveTo(path[0]); if (path.size()==2) ppath.lineTo(path[1]); else if (path.size()==3) ppath.quadTo(path[1], path[2]); else if (path.size()==4) ppath.cubicTo(path[1], path[2], path[3]); // draw corrected line if (path.size()>0) { painter.drawPath(ppath); doDrawDecorator=true; } } else { if (points.size()>1) { std::function plotfunc; const auto B2_0=jkqtp_makeBernstein(2,0); const auto B2_1=jkqtp_makeBernstein(2,1); const auto B2_2=jkqtp_makeBernstein(2,2); const auto B3_0=jkqtp_makeBernstein(3,0); const auto B3_1=jkqtp_makeBernstein(3,1); const auto B3_2=jkqtp_makeBernstein(3,2); const auto B3_3=jkqtp_makeBernstein(3,3); const auto B4_0=jkqtp_makeBernstein(4,0); const auto B4_1=jkqtp_makeBernstein(4,1); const auto B4_2=jkqtp_makeBernstein(4,2); const auto B4_3=jkqtp_makeBernstein(4,3); const auto B4_4=jkqtp_makeBernstein(4,4); QVector pointsT=points; if (getDrawMode()==DrawAsMathematicalCurve) { if (points.size()==2) plotfunc=[&](double t) -> QPointF { return points[0]+t*(points[1]-points[0]); }; else if (points.size()==3) plotfunc=[&](double t) -> QPointF { return points[0]*B2_0(t)+points[1]*B2_1(t)+points[2]*B2_2(t); }; else if (points.size()==4) plotfunc=[&](double t) -> QPointF { return points[0]*B3_0(t)+points[1]*B3_1(t)+points[2]*B3_2(t)+points[3]*B3_3(t); }; else if (points.size()==5) plotfunc=[&](double t) -> QPointF { return points[0]*B4_0(t)+points[1]*B4_1(t)+points[2]*B4_2(t)+points[3]*B4_3(t)+points[4]*B4_4(t); }; } else { for (auto& p: pointsT) p=transform(p); if (pointsT.size()==2) plotfunc=[&](double t) -> QPointF { return pointsT[0]+t*(pointsT[1]-pointsT[0]); }; else if (pointsT.size()==3) plotfunc=[&](double t) -> QPointF { return pointsT[0]*B2_0(t)+pointsT[1]*B2_1(t)+pointsT[2]*B2_2(t); }; else if (pointsT.size()==4) plotfunc=[&](double t) -> QPointF { return pointsT[0]*B3_0(t)+pointsT[1]*B3_1(t)+pointsT[2]*B3_2(t)+pointsT[3]*B3_3(t); }; else if (pointsT.size()==5) plotfunc=[&](double t) -> QPointF { return pointsT[0]*B4_0(t)+pointsT[1]*B4_1(t)+pointsT[2]*B4_2(t)+pointsT[3]*B4_3(t)+pointsT[4]*B4_4(t); }; } if (plotfunc) { std::function fTransformedFunc; const int minSamples=10; const int maxRefinementDegree=5; const double slopeTolerance=0.005; const int minPixelPerSample=32; const double maxConsecutiveAngleDegree=0.2; if (getDrawMode()==DrawAsMathematicalCurve) fTransformedFunc = std::bind([plotfunc](const JKQTPPlotElement* plot, double t) -> QPointF { return plot->transform(plotfunc(t)); }, this, std::placeholders::_1); else fTransformedFunc = plotfunc; JKQTPAdaptiveFunctionGraphEvaluator evaluator(fTransformedFunc, minSamples, maxRefinementDegree, slopeTolerance, minPixelPerSample); QVector data=evaluator.evaluate(0,1); data=JKQTPSimplyfyLineSegemnts(data, maxConsecutiveAngleDegree); painter.drawPolylineFast(data.data(), data.size()); doDrawDecorator=true; } } } // potentially draw line-end decorators/arrows if (doDrawDecorator) { painter.setBrush(getLineColor()); JKQTPPlotLineDecorator(painter, xx1.x(), xx1.y(), angle1, getTailDecoratorStyle(), calcTailDecoratorSize(getLinePen(painter, getParent()).widthF())); JKQTPPlotLineDecorator(painter, xx2.x(), xx2.y(), angle2, getHeadDecoratorStyle(), calcHeadDecoratorSize(getLinePen(painter, getParent()).widthF())); } for (const auto& p:points) { addHitTestData(p.x(), p.y()); } } } void JKQTPGeoBezierCurve::setPoints(const QVector &__value) { const int maxPoints=5; if (points.size()<2 || points.size()>maxPoints) throw std::runtime_error("JKQTPGeoBezierCurve only supports 2, 3 ... or "+std::to_string(maxPoints)+" points, but you supplied "+std::to_string(__value.size())+"!"); points=__value; } QVector JKQTPGeoBezierCurve::getPoints() const { return points; } QPointF JKQTPGeoBezierCurve::getStart() const { return points[0]; } QPointF JKQTPGeoBezierCurve::getEnd() const { return points.last(); } QPointF JKQTPGeoBezierCurve::getControl1() const { return points[1]; } QPointF JKQTPGeoBezierCurve::getControl2() const { return points[2]; } void JKQTPGeoBezierCurve::setLine(const QPointF &start, const QPointF &end) { points={start,end}; } void JKQTPGeoBezierCurve::setQuad(const QPointF &start, const QPointF &control1, const QPointF &end) { points={start,control1,end}; } void JKQTPGeoBezierCurve::setCubic(const QPointF &start, const QPointF &control1, const QPointF &control2, const QPointF &end) { points={start,control1,control2,end}; } void JKQTPGeoBezierCurve::setQuartic(const QPointF &start, const QPointF &control1, const QPointF &control2, const QPointF &control3, const QPointF &end) { points={start,control1,control2,control3,end}; } int JKQTPGeoBezierCurve::getDegree() const { return points.size()-1; } int JKQTPGeoBezierCurve::getNumberOfCOntrolPoints() const { return points.size(); }