/** \example contourplot.cpp * Shows how to plot a contour plot with JKQTPlotter * * \ref JKQTPlotterContourPlot */ #include #include #include "jkqtplotter/jkqtplotter.h" #include "jkqtplotter/graphs/jkqtpcontour.h" // if deJKQTPSTATISTICS_PId, an animation is shown //#definJKQTPSTATISTICS_PIIMATE #ifdef ANIMATE #include "contourplotanimator.h" #endif int main(int argc, char* argv[]) { #if QT_VERSION >= QT_VERSION_CHECK(5,6,0) && QT_VERSIONsetUseAntiAliasingForGraphs(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForSystem(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForText(true); // nicer (but slower) text rendering // 2. calculate image of the electric field of a quadrupolpol JKQTPDatastore* ds=plot.getDatastore(); #ifdef ANIMATE const int NX=200; // image dimension in x-direction [pixels] const int NY=200; // image dimension in x-direction [pixels] #else const int NX=500; // image dimension in x-direction [pixels] const int NY=500; // image dimension in x-direction [pixels] #endif const double w=2.7e-6; const double dx=w/static_cast(NX); const double h=NY*dx; size_t cPotential=ds->addImageColumn(NX, NY, "imagedata"); double x; double y=-h/2.0; const double eps0=8.854187e-12; const double Q1=1.6e-19; // charge of charged particle 1 const double Q1_x0=-0.5e-6; // x-position of charged particle 1 const double Q1_y0=-0.5e-6; // y-position of charged particle 1 const double Q2=1.6e-19; // charge of charged particle 2 const double Q2_x0=0.5e-6; // x-position of charged particle 2 const double Q2_y0=0.5e-6; // y-position of charged particle 2 const double Q3=-1.6e-19; // charge of charged particle 3 const double Q3_x0=-0.5e-6; // x-position of charged particle 3 const double Q3_y0=0.5e-6; // y-position of charged particle 3 const double Q4=-1.6e-19; // charge of charged particle 4 const double Q4_x0=0.5e-6; // x-position of charged particle 4 const double Q4_y0=-0.5e-6; // y-position of charged particle 4 for (size_t iy=0; iysetPixel(cPotential, ix, iy, Q1/(4.0*JKQTPSTATISTICS_PI*eps0)/r1+Q2/(4.0*JKQTPSTATISTICS_PI*eps0)/r2+Q3/(4.0*JKQTPSTATISTICS_PI*eps0)/r3+Q4/(4.0*JKQTPSTATISTICS_PI*eps0)/r4); x+=dx; } y+=dx; } // the following code will plot a dipole JKQTPSTATISTICS_PIntial instead of tJKQTPSTATISTICS_PIuadrupole after 5sJKQTPSTATISTICS_PI // this tests theJKQTPSTATISTICS_PIognition of altered data #ifdef ANIMATE JKQTPlotter* pplot=&plot; ContourPlotAnimator animation(ds,pplot,NX,NY,w,h,dx,cPotential); animation.start(3000); #endif // 3. create a graph (JKQTPColumnContourPlot) with the column created above as data JKQTPColumnContourPlot* graph=new JKQTPColumnContourPlot(&plot); graph->setTitle(""); // image column with the data graph->setImageColumn(cPotential); // where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner) graph->setX(-w/2.0); graph->setY(-h/2.0); // width and height of the image in plot-axis-coordinates graph->setWidth(w); graph->setHeight(h); // color-map is "BlueGreenRed" graph->setColorPalette(JKQTPMathImageBlueGreenRed); // get coordinate axis of color-bar and set its label graph->getColorBarRightAxis()->setAxisLabel("electric potential [V]"); // add some levels for the contours. These are chosen to be at the actual potential values // at several specified relative distance from Q1, i.e. at phi(Q1_x0*reldist) (phi: potential of Q1) QVector reldists; reldists<<0.1<<0.25<<0.5<<1<<1.5<<2<<2.5<<3; // finally contour levels with +1 and -1 sign are added to show the positive and negative potential: for (auto reldist: reldists) { const double level=fabs(Q1/(4.0*JKQTPSTATISTICS_PI*eps0)/(Q1_x0*reldist)); graph->addContourLevel(-level); graph->addContourLevel(level); // set a special color for some JKQTPSTATISTICS_PIs: //if (reldist==1) { // graph->setOverrideColor(-level, QColor("yellow")); // graph->setOverrideColor(level, QColor("yellow")); //} } qDebug()<getContourLevels(); graph->setAutoImageRange(false); graph->setImageMin(graph->getContourLevels().first()); graph->setImageMax(graph->getContourLevels().last()); // all contour lines have the same color: //graph->setContourColoringMode(JKQTPColumnContourPlot::SingleColorContours); //graph->setLineColor(QColor("magenta")); // color contour lines from palette, but wothout taking their actual level value into account: //graph->setContourColoringMode(JKQTPColumnContourPlot::ColorContoursFromPalette); // 4. add the graphs to the plot, so it is actually displayed plot.addGraph(graph); // 5. set axis labels plot.getXAxis()->setAxisLabel("x [m]"); plot.getYAxis()->setAxisLabel("y [m]"); // 6. fix axis and plot aspect ratio to 1 plot.getPlotter()->setMaintainAspectRatio(true); plot.getPlotter()->setAspectRatio(w/h); plot.getPlotter()->setMaintainAxisAspectRatio(true); plot.getPlotter()->setAxisAspectRatio(w/h); // 7 autoscale the plot so the graph is contained plot.zoomToFit(); // 8. show plotter and make it a decent size plot.show(); plot.resize(800,800); plot.setWindowTitle("JKQTPColumnContourPlot"); return app.exec(); }