# Example (JKQTPlotter): Plotting a Statistical Distribution of Data {#JKQTPlotterDistributionPlot} This project (see [`test_distributionplot`](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/test_distributionplot) demonstrates how to combine several different graphs and geometric elements to show a set of random values and their statistics. The source code of the main application is (see [`test_distributionplot.cpp`](test_distributionplot.cpp). After adding all necessary data to the JKQTDatastore: ```.cpp // 1. create a plotter window and get a pointer to the internal datastore (for convenience) JKQTPlotter plot; plot.getPlotter()->setUseAntiAliasingForGraphs(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForSystem(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForText(true); // nicer (but slower) text rendering JKQTPDatastore* ds=plot.getDatastore(); // 2. now we create random values drawn from a gaussian distribution QVector RANDVAL; // will store the values themselves std::map hist; // is used to calculate the histogram of the data for (int i=-5; i<=15; i++) hist[i]=0; std::random_device rd; // random number generators: std::mt19937 gen{rd()}; // draw 301 random values from a gaussian distribution around 5 with width 3 const double th_mean=5; const double th_std=3; std::normal_distribution<> d{th_mean,th_std}; size_t NDATA=301; double sum=0; double square_sum=0; for (size_t i=0; i(NDATA); } // sort random data in order to calculate the statistical properties: qSort(RANDVAL); const double rndMean=sum/static_cast(NDATA); const double rndMin=RANDVAL.first(); const double rndMax=RANDVAL.last(); const double rndMedian=RANDVAL[RANDVAL.size()/2]; const double rndQ25=RANDVAL[RANDVAL.size()/4]; const double rndQ75=RANDVAL[RANDVAL.size()*3/4]; // 3. make data available to JKQTPlotter by adding it to the internal datastore. size_t columnRANDVAL=ds->addCopiedColumn(RANDVAL, "RANDVAL"); // copy random values std::pair columnHIST = ds->addCopiedMap(hist, "HIST_X", "HIST_Y"); // copy histogram // 4. create a graph of horizontal boxplots: JKQTPSingleColumnSymbolsGraph* graphRANDVALS=new JKQTPSingleColumnSymbolsGraph(&plot); graphRANDVALS->setDataColumn(columnRANDVAL); // draw data as symbols at (x,y)=(data,-0.07): graphRANDVALS->setDataDirection(JKQTPSingleColumnSymbolsGraph::DataDirection::X); graphRANDVALS->setPosition(-0.07); // data should scatter around position=-0.07 with a width=0.08 (i.e. from position-width/2 ... position+width/2) //graphRANDVALS->setWidth(0.08); //graphRANDVALS->setPositionScatterStyle(JKQTPSingleColumnSymbolsGraph::RandomScatter); // data should scatter around position=-0.07 in a BeeSwarmScatter-Plot graphRANDVALS->setPositionScatterStyle(JKQTPSingleColumnSymbolsGraph::BeeSwarmScatter); // choose small filled circles as symbols, JKQTPGraphSymbols::set their color: graphRANDVALS->setSymbolType(JKQTPFilledCircle); graphRANDVALS->setSymbolSize(5); graphRANDVALS->setColor(QColor("red")); graphRANDVALS->setFillColor(graphRANDVALS->getColor().lighter(180)); // set title: graphRANDVALS->setTitle("Random Data"); // 5. draw the histogram as barchart: JKQTPBarVerticalGraph* graphHIST=new JKQTPBarVerticalGraph(&plot); graphHIST->setXColumn(columnHIST.first); graphHIST->setYColumn(columnHIST.second); // set title: graphHIST->setTitle("Histogram"); // 6. draw the theoretical distribution as function graph: JKQTPXFunctionLineGraph* graphTheoDist=new JKQTPXFunctionLineGraph(&plot); // define the gaussian function used for the random number generator graphTheoDist->setPlotFunctionFunctor([&th_mean,&th_std](double x) -> double { return 1.0/(th_std*sqrt(2.0*M_PI))*exp(-0.5*(x-th_mean)*(x-th_mean)/th_std/th_std); }); // set title: graphTheoDist->setTitle(QString("Theoretical Distribution $\\mu=%1, \\sigma=%2$").arg(th_mean,0, 'f', 1).arg(th_std,0, 'f', 1)); // 7. create a graph of horizontal boxplots: JKQTPBoxplotHorizontalElement* graphBoxPlot=new JKQTPBoxplotHorizontalElement(&plot); graphBoxPlot->setPos(0.15); graphBoxPlot->setMin(rndMin); graphBoxPlot->setPercentile25(rndQ25); graphBoxPlot->setMean(rndMean); graphBoxPlot->setMedian(rndMedian); graphBoxPlot->setPercentile75(rndQ75); graphBoxPlot->setMax(rndMax); graphBoxPlot->setBoxWidth(24); graphBoxPlot->setSymbolTypeSize(16); graphBoxPlot->setSymbolTypeWidth(2); graphBoxPlot->setTitle("Statistical Properties"); graphBoxPlot->setColor(QColor("blue")); // make fill collor a lighter shade of the outline color graphBoxPlot->setFillColor(graphBoxPlot->getColor().lighter(180)); // make whiskers dashed graphBoxPlot->setWhiskerLineStyle(Qt::DashLine); // 8. add the graphs to the plot, so it is actually displayed plot.addGraph(graphRANDVALS); plot.addGraph(graphHIST); plot.addGraph(graphTheoDist); plot.addGraph(graphBoxPlot); // 9. autoscale the plot so the graph is contained plot.zoomToFit(); // 10. Move key to top-left plot.getPlotter()->setKeyPosition(JKQTPKeyInsideTopLeft); // 11. show plotter and make it a decent size plot.show(); plot.resize(800,800); ``` The result looks like this: ![test_distributionplot](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/test_distributionplot.png)