/** \example rgbimageplot.cpp * Shows how to plot colored math images with JKQTPlotter, where different images/matrices are assigned to different color channels * * \ref JKQTPlotterRGBImagePlot */ #include #include #include "jkqtplotter/jkqtplotter.h" #include "jkqtplotter/graphs/jkqtpimagergb.h" int main(int argc, char* argv[]) { #if QT_VERSION >= 0x050600 QApplication::setAttribute(Qt::AA_EnableHighDpiScaling); // DPI support QCoreApplication::setAttribute(Qt::AA_UseHighDpiPixmaps); //HiDPI pixmaps #endif QApplication app(argc, argv); JKQTPlotter plot; // 1. create a plotter window and get a pointer to the internal datastore (for convenience) plot.getPlotter()->setUseAntiAliasingForGraphs(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForSystem(true); // nicer (but slower) plotting plot.getPlotter()->setUseAntiAliasingForText(true); // nicer (but slower) text rendering JKQTPDatastore* ds=plot.getDatastore(); // 2. now we create data for the charts (taken from https://commons.wikimedia.org/wiki/File:Energiemix_Deutschland.svg) const int NX=100; // image dimension in x-direction [pixels] const int NY=100; // image dimension in x-direction [pixels] const double dx=1e-2; // size of a pixel in x-direction [micrometers] const double dy=1e-2; // size of a pixel in x-direction [micrometers] const double w=static_cast(NX)*dx; const double h=static_cast(NY)*dy; double airydisk1[NX*NY]; // row-major image double airydisk2[NX*NY]; // row-major image // 2.1 Parameters for airy disk plot (see https://en.wikipedia.org/wiki/Airy_disk) double NA=1.1; // numerical aperture of lens double wavelength1=540e-3; // wavelength of the light [micrometers] double wavelength2=450e-3; // wavelength of the light [micrometers] // 2.2 calculate image of airy disk in a row-major array double x, y=-h/2.0; for (int iy=0; iyaddCopiedImageAsColumn(airydisk1, NX, NY, "imagedata1"); size_t cAiryDisk2=ds->addCopiedImageAsColumn(airydisk2, NX, NY, "imagedata2"); // 4. create a graph (JKQTPColumnMathImage) with the column created above as data // The data is color-coded with the color-palette JKQTPMathImageMATLAB // the converted range of data is determined automatically because s etAutoImageRange(true) JKQTPColumnRGBMathImage* graph=new JKQTPColumnRGBMathImage(&plot); graph->setTitle(""); // image column with the data (R/G/B or C/M/Y ...) graph->setImageGColumn(cAiryDisk1); // G/M channel graph->setImageBColumn(cAiryDisk2); // B/Y channel // set size of the data (the datastore does not contain this info, as it only manages 1D columns of data and this is used to assume a row-major ordering graph->setNx(NX); graph->setNy(NY); // where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner) graph->setX(-w/2.0); graph->setY(-h/2.0); // width and height of the image in plot-axis-coordinates graph->setWidth(w); graph->setHeight(h); // get coordinate axis of color-bar and set its label graph->getColorBarRightAxisB()->setAxisLabel("blue light field strength [AU]"); graph->getColorBarRightAxisG()->setAxisLabel("green light field strength [AU]"); // determine min/max of data automatically and use it to set the range of the color-scale graph->setAutoImageRange(true); // use (subtractive) CMY color model, not RGB //graph->setRgbMode(JKQTPRGBMathImageModeCMYMode); // 5. add the graphs to the plot, so it is actually displayed plot.addGraph(graph); // 6. set axis labels plot.getXAxis()->setAxisLabel("x [{\\mu}m]"); plot.getYAxis()->setAxisLabel("y [{\\mu}m]"); // 7. fix axis and plot aspect ratio to 1 plot.getPlotter()->setMaintainAspectRatio(true); plot.getPlotter()->setMaintainAxisAspectRatio(true); // 8 autoscale the plot so the graph is contained plot.zoomToFit(); // show plotter and make it a decent size plot.show(); plot.resize(600,600); plot.setWindowTitle("JKQTPColumnRGBMathImage"); return app.exec(); }