/* Copyright (c) 2020-2020 Jan W. Krieger () This software is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation, either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License (LGPL) for more details. You should have received a copy of the GNU Lesser General Public License (LGPL) along with this program. If not, see . */ #include #include #include #include "jkqtplotter/graphs/jkqtpscatter.h" #include "jkqtplotter/jkqtpgraphsbasestylingmixins.h" #include "jkqtplotter/jkqtplotter_imexport.h" #include "jkqtcommon/jkqtpgeometrytools.h" #include #ifndef jkqtpevaluatedparametriccurve_H #define jkqtpevaluatedparametriccurve_H /*! \brief type of functions that may be plotted by JKQTPXYFunctionLineGraph \ingroup jkqtplotter_functiongraphs This is the type of functions \f$ [x,y]=f(t, \vec{p}) \f$ that may be plottet by JKQTPXYFunctionLineGraph. It is possible to supply parameters \f$ \vec{p} \f$ to the function that influence its result. Parameters are given as a pointer to some memory location. The function has to know on its own how to interpret these. */ typedef std::function jkqtpParametricCurveFunctionType; /*! \brief simplified type of functions (without parameters) that may be plotted by JKQTPXYFunctionLineGraph \ingroup jkqtplotter_functiongraphs This is the type of functions \f$ [x,y]=f(t) \f$ that may be plottet by JKQTPXYFunctionLineGraph and JKQTPYFunctionLineGraph. */ typedef std::function jkqtpSimpleParametricCurveFunctionType; /*! \brief This implements line plots where the data is taken from a user supplied function \f$ [x,y]=f(t) \f$ The function is evaluated on a user-specified range \f$ t \in \left[t_\text{min}, t_\text{max}\right] \f$ \ingroup jkqtplotter_functiongraphs This class implements an intelligent plotting algorithm for functions. It starts by sampling the function at minSamples positions. Then each function interval is bisected recursively if necessary. To do so the function is evaluated at the mid point and the slopes \f$ \alpha_{\mbox{left}} \f$ and \f$ \alpha_{\mbox{right}} \f$ of the two linear segments are compared. The midpoint is added to the graph if \f[ \left|\alpha_{\mbox{right}}-\alpha_{\mbox{left}}\right|>\mbox{slopeTolerance} \f] In addition all sampling points except minimum and maximum are beeing shifted by a random fraction their distance to the other points. This helps to prevent beats when sampling periodic functions. the following image shows a Lissajou's fugure drawn with this function \image html plot_evalcurve.png The source code for this example is: \code JKQTPXYFunctionLineGraph* func1=new JKQTPXYFunctionLineGraph(plot); func1->setPlotFunctionFunctor([](double t) -> QPointF { const double a=5; const double b=4; const double delta=JKQTPSTATISTICS_PI/4.0; return QPointF(sin(a*t+delta), sin(b*t)); }); func1->setTRange(0, 2.0*JKQTPSTATISTICS_PI); func1->setTitle("C++-inline function $[ sin(5{\\cdot}t+\\pi/4), sin(4{\\cdot}t) ]$"); \endcode \see \ref JKQTPlotterEvalCurves , JKQTPAdaptiveFunctionGraphEvaluator, JKQTPXFunctionLineGraph, JKQTPYFunctionLineGraph */ class JKQTPLOTTER_LIB_EXPORT JKQTPXYFunctionLineGraph: public JKQTPGraph, public JKQTPGraphLineStyleMixin { Q_OBJECT public: /** \brief class constructor */ JKQTPXYFunctionLineGraph(JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ JKQTPXYFunctionLineGraph(JKQTPlotter* parent); /** \brief class constructor */ JKQTPXYFunctionLineGraph(const jkqtpSimpleParametricCurveFunctionType & f, const QString& title, double tmin_=0, double tmax_=1, JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ JKQTPXYFunctionLineGraph(const jkqtpSimpleParametricCurveFunctionType & f, const QString& title, double tmin_, double tmax_, JKQTPlotter* parent); /** \brief class constructor */ JKQTPXYFunctionLineGraph(jkqtpSimpleParametricCurveFunctionType && f, const QString& title, double tmin_=0, double tmax_=1, JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ JKQTPXYFunctionLineGraph(jkqtpSimpleParametricCurveFunctionType && f, const QString& title, double tmin_, double tmax_, JKQTPlotter* parent); /** \brief class constructor */ JKQTPXYFunctionLineGraph(const jkqtpParametricCurveFunctionType & f, const QString& title, double tmin_=0, double tmax_=1, JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ JKQTPXYFunctionLineGraph(const jkqtpParametricCurveFunctionType & f, const QString& title, double tmin_, double tmax_, JKQTPlotter* parent); /** \brief class constructor */ JKQTPXYFunctionLineGraph(jkqtpParametricCurveFunctionType && f, const QString& title, double tmin_=0, double tmax_=1, JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ JKQTPXYFunctionLineGraph(jkqtpParametricCurveFunctionType && f, const QString& title, double tmin_, double tmax_, JKQTPlotter* parent); /** \brief class destructor */ virtual ~JKQTPXYFunctionLineGraph() override; /** \brief plots the graph to the plotter object specified as parent */ virtual void draw(JKQTPEnhancedPainter& painter) override; /** \brief plots a key marker inside the specified rectangle \a rect */ virtual void drawKeyMarker(JKQTPEnhancedPainter& painter, QRectF& rect) override; /** \brief returns the color to be used for the key label */ virtual QColor getKeyLabelColor() const override; /** \brief get the maximum and minimum x-value of the graph * * This functions returns 0 for both parameters, so that the plotter uses the predefined * min and max values. */ virtual bool getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) override; /** \brief get the maximum and minimum y-value of the graph */ virtual bool getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) override; /** \brief sets a functor to be plotted * * \see plotFunction */ virtual void setPlotFunctionFunctor (jkqtpParametricCurveFunctionType && __value); /** \brief sets a functor to be plotted * * \see plotFunction */ virtual void setPlotFunctionFunctor (const jkqtpParametricCurveFunctionType & __value); /** \brief sets a functor to be plotted * * \see simplePlotFunction */ virtual void setPlotFunctionFunctor (jkqtpSimpleParametricCurveFunctionType && __value); /** \brief sets a functor to be plotted * * \see simplePlotFunction */ virtual void setPlotFunctionFunctor (const jkqtpSimpleParametricCurveFunctionType & __value); /*! \copydoc plotFunction */ \ virtual jkqtpParametricCurveFunctionType getPlotFunctionFunctor () const; /*! \copydoc simplePlotFunction */ \ virtual jkqtpSimpleParametricCurveFunctionType getSimplePlotFunction () const; /*! \copydoc params */ virtual void setParams(void* __value); /*! \copydoc params */ void* getParams() const; /** \brief sets the params as a pointer to an internal COPY of the given vector (not the data of the vector, as then the size would be unknown!!!) */ virtual void setParams(const QVector& params); /** \brief sets the params from a copy of the given array of length \a N */ void setCopiedParams(const double* params, int N); /** \brief set an internal parameter vector as function parameters, initialized with {p1} */ void setParamsV(double p1); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2} */ void setParamsV(double p1, double p2); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3} */ void setParamsV(double p1, double p2, double p3); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3,p4} */ void setParamsV(double p1, double p2, double p3, double p4); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3,p4,p5} */ void setParamsV(double p1, double p2, double p3, double p4, double p5); /** \brief returns the currently set internal parameter vector */ QVector getInternalParams() const; /*! \copydoc minSamples */ void setMinSamples(const unsigned int & __value); /*! \copydoc minSamples */ unsigned int getMinSamples() const; /*! \copydoc maxRefinementDegree */ void setMaxRefinementDegree(const unsigned int & __value); /*! \copydoc maxRefinementDegree */ unsigned int getMaxRefinementDegree() const; /*! \copydoc slopeTolerance */ void setSlopeTolerance(double __value); /*! \copydoc slopeTolerance */ double getSlopeTolerance() const; /*! \copydoc minPixelPerSample */ void setMinPixelPerSample(double __value); /*! \copydoc minPixelPerSample */ double getMinPixelPerSample() const; /*! \copydoc plotRefinement */ void setPlotRefinement(bool __value); /*! \copydoc plotRefinement */ bool getPlotRefinement() const; /*! \copydoc displaySamplePoints */ void setDisplaySamplePoints(bool __value); /*! \copydoc displaySamplePoints */ bool getDisplaySamplePoints() const; /*! \copydoc parameterColumn */ void setParameterColumn(int __value); /*! \copydoc parameterColumn */ int getParameterColumn() const; /*! \copydoc parameterColumn */ void setParameterColumn (size_t __value); /** \copydoc JKQTPGraph::usesColumn() */ virtual bool usesColumn(int c) const override; /*! \copydoc tmin */ double getTMin() const; /*! \copydoc tmax */ double getTMax() const; /*! \copydoc tmin */ void setTMin(double val); /*! \copydoc tmax */ void setTMax(double val); /*! \brief returns the t-value range for \f$ [x,y]=f(t), t \in \left[t_\text{min}, t_\text{max}\right] \f$ */ QPair getTRange() const; /*! \brief set the t-value range for \f$ [x,y]=f(t), t \in \left[t_\text{min}, t_\text{max}\right] \f$ */ void setTRange(double tmin_, double tmax_); /*! \brief set the t-value range for \f$ [x,y]=f(t), t \in \left[t_\text{min}, t_\text{max}\right] \f$ */ void setTRange(const QPair& range); protected: /** \brief lower bound of t-value range for \f$ [x,y]=f(t), t \in \left[t_\text{min}, t_\text{max}\right] \f$ , i.e. \f$ t_\text{min} \f$ , default is 0 */ double tmin; /** \brief upper bound of t-value range for \f$ [x,y]=f(t), t \in \left[t_\text{min}, t_\text{max}\right] \f$ , i.e. \f$ t_\text{min} \f$ , default is 1 */ double tmax; /** \brief plot data calculated by createPlotData() */ QVector data; /** \brief fill the data array with data from the function plotFunction */ virtual void createPlotData( bool collectParams=true); /** \brief ensure that current function parameters for plotFunction (which may stem from different sources, as direct data, a datastore column ...) are stored in iparams */ virtual void collectParameters(); /** \brief if set, the values from this datatsore column are used for the parameters \c p1 , \c p2 , \c p3 , ... of the plot function */ int parameterColumn; /** \brief the function to be plotted */ jkqtpParametricCurveFunctionType plotFunction; /** \brief a simple function to be plotted, simplified form without parameters */ jkqtpSimpleParametricCurveFunctionType simplePlotFunction; /** \brief pointer to the parameters supplied to the plotting funtion */ void* params; /** \brief the minimum number of points to evaluate the function at */ unsigned int minSamples; /** \brief the maximum number of recursive refinement steps * * each step bisects the interval \f$ [a, b] \f$ into two halfes. So the maximum number * of points plotted at all are thus: * \f[ \mbox{minSamples} \cdot 2^{\mbox{maxRefinementDegree}} \f] */ unsigned int maxRefinementDegree; /** \brief the tolerance for the difference of two subsequent slopes */ double slopeTolerance; /** \brief create one sample at least every \a minPixelPerSample pixels */ double minPixelPerSample; /** \brief switch on or off [default: on] the plot refinement algorithm */ bool plotRefinement; /** \brief if true [default: off] display the points where the function has been sampled */ bool displaySamplePoints; /** \brief internal storage for the current function parameters for plotFunction (which may stem from different sources, as direct data, a datastore column ...) */ QVector iparams; }; #endif // jkqtpevaluatedparametriccurve_H