/** \example jkqtplotter_simpletest_rgbimageplot_opencv.cpp * JKQTPlotter: Examples: Simple RGB image plot, showing a 3-channel OpenCV cv::Mat * * \ref JKQTPlotterImagePlotRGBOpenCV */ #include #include #include "jkqtplotter/jkqtplotter.h" #include "jkqtplotter/jkqtpgraphs.h" #include "jkqtplotter/jkqtpgraphsimage.h" #include "jkqtplotter/jkqtpopencvinterface.h" #include int main(int argc, char* argv[]) { QApplication app(argc, argv); JKQTPlotter plot; // 1. create a plotter window and get a pointer to the internal datastore (for convenience) plot.get_plotter()->set_useAntiAliasingForGraphs(true); // nicer (but slower) plotting plot.get_plotter()->set_useAntiAliasingForSystem(true); // nicer (but slower) plotting plot.get_plotter()->set_useAntiAliasingForText(true); // nicer (but slower) text rendering JKQTPDatastore* ds=plot.getDatastore(); // 2. now we open a BMP-file and load it into an OpenCV cv::Mat cv::Mat picture = cv::imread("example.bmp"); // 3. make data available to JKQTPlotter by adding it to the internal datastore. // In this step the contents of each channel of the openCV cv::Mat is copied into a column // of the datastore in row-major order size_t cPictureR=JKQTPCopyCvMatToColumn(ds, picture, "R-channel", 2); size_t cPictureG=JKQTPCopyCvMatToColumn(ds, picture, "G-channel", 1); size_t cPictureB=JKQTPCopyCvMatToColumn(ds, picture, "B-channel", 0); // 4. create a graph (JKQTPColumnRGBMathImage) with the columns created above as data JKQTPColumnRGBMathImage* graph=new JKQTPColumnRGBMathImage(&plot); graph->set_title(""); // set size of the data (the datastore does not contain this info, as it only manages 1D columns of data and this is used to assume a row-major ordering graph->set_Nx(picture.cols); graph->set_Ny(picture.rows); // where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner) graph->set_x(0); graph->set_y(0); // width and height of the image in plot-axis-coordinates graph->set_width(picture.cols); graph->set_height(picture.rows); // image column with the data graph->set_imageRColumn(cPictureR); graph->set_imageGColumn(cPictureG); graph->set_imageBColumn(cPictureB); // determine min/max of each channel manually graph->set_imageMinR(0); graph->set_imageMaxR(255); graph->set_imageMinG(0); graph->set_imageMaxG(255); graph->set_imageMinB(0); graph->set_imageMaxB(255); // 5. add the graphs to the plot, so it is actually displayed plot.addGraph(graph); // 6. set axis labels plot.get_xAxis()->set_axisLabel("x [pixels]"); plot.get_yAxis()->set_axisLabel("y [pixels]"); // 7. fix axis aspect ratio to width/height, so pixels are square plot.get_plotter()->set_maintainAspectRatio(true); plot.get_plotter()->set_aspectRatio(double(picture.cols)/double(picture.rows)); // 8. autoscale the plot so the graph is contained plot.zoomToFit(); // show plotter and make it a decent size plot.show(); plot.resize(800,600); plot.setWindowTitle("JKQTPColumnMathImage"); return app.exec(); }