# Example (JKQTPlotter): Plotting Mathematical Functions as Line Graphs {#JKQTPlotterFunctionPlots} ## Basics This project (see `./examples/functionplot/`) demonstrates how to plot mathematical functions as line graphs. The functions may be defined as static C functions, C++ functors or c++ inline functions. See [examples/parsedfunctionplot](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/parsedfunctionplot) for an example of how to use an internal equation parser provided with JKQTPlotter instead of directly defining functions. [TOC] # Simple C++ inline function The first example shows how to plot a C++ inline function: ```.cpp JKQTPXFunctionLineGraph* func1=new JKQTPXFunctionLineGraph(plot); func1->setPlotFunctionFunctor([](double x) { return 0.2*x*x-0.015*x*x*x; }); func1->setTitle("C++-inline function $0.2x^2-0.015x^3$"); plot->addGraph(func1); ``` # Simple C++ inline function with parameters In any such plot function, you can also use parameters, provided via the second parameter. Usually these are "internal parameters", defined by `func2->setParamsV(p0, p1, ...)`: ```.cpp JKQTPXFunctionLineGraph* func2=new JKQTPXFunctionLineGraph(plot); func2->setPlotFunctionFunctor([](double x, const QVector& p) { return p.at(0)*sin(2.0*JKQTPSTATISTICS_PI*x*p.at(1)); }); // here we set the parameters p0, p1 func2->setParamsV(5, 0.2); func2->setTitle("C++-inline function with int. params $p_0\\cdot\\sin(x*2.0*\\pi\\cdot p_1)$"); plot->addGraph(func2); ``` # C++ functors as plot functions You can also use C++ functors (or function objects): ```.cpp struct SincSqr { public: inline SincSqr(double amplitude): a(amplitude) {} inline double operator()(double x) { return a*sin(x)*sin(x)/x/x; } private: double a; }; // ... JKQTPXFunctionLineGraph* func4=new JKQTPXFunctionLineGraph(plot); func4->setPlotFunctionFunctor(SincSqr(-8)); func4->setTitle("C++ functor $-8*\\sin^2(x)/x^2$"); plot->addGraph(func4); ``` # Static C functions You can also plot simple static C functions: ```.cpp double sinc(double x) { return 10.0*sin(x)/x; } // ... JKQTPXFunctionLineGraph* func5=new JKQTPXFunctionLineGraph(plot); func5->setPlotFunctionFunctor(&sinc); func5->setTitle("static C function $10*\\sin(x)/x$"); plot->addGraph(func5); ``` # Predefined "special" functions Finally `JKQTPXFunctionLineGraph` provides a small set of special functions (polynomial `p0+p1*x+p2*x^2+...`, exponential `p0+p1*exp(x/p2)`, power-law `p0+p1*x^p2`, ...), which are parametrized from the internal or external parameters: ```.cpp JKQTPXFunctionLineGraph* func6=new JKQTPXFunctionLineGraph(plot); func6->setSpecialFunction(JKQTPXFunctionLineGraph::Line); // here we set offset p0=-1 and slope p1=1.5 of the line p0+p1*x func6->setParamsV(-1,1.5); func6->setTitle("special function: linear"); plot->addGraph(func6); ``` To demonstrate how to use parameters from a datastore column, have a look at the next example. It is derived from the special-function plot above, but adds a line with a different offset and slope and reads the parameters from a datastore column `paramCol`, which is initialized from the vector `params`: ```.cpp JKQTPXFunctionLineGraph* func7=new JKQTPXFunctionLineGraph(plot); func7->setSpecialFunction(JKQTPXFunctionLineGraph::Line); // here we set offset p0=1 and slope p1=-1.5 of the line p0+p1*x by adding these into a column // in the internal datastore and then set that column as parameterColumn for the function graph QVector params; params << /*p0=*/1 << /*p1=*/-1.5; size_t paramCol=plot->getDatastore()->addCopiedColumn(params); func7->setParameterColumn(paramCol); func7->setTitle("special function: linear"); plot->addGraph(func7); ``` # Screenshot This code snippets above result in a plot like this: ![functionplot](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/functionplot.png) # Notes Note that all the different variants to provide parameters can be used with all types of functions! Also see the example [Plotting Parsed Mathematical Functions as Line Graphs](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/parsedfunctionplot) for details on how the actual plotting algorithm works. That example also shows how to define a function as a string, which is then parsed and evaluated by an expression parser library embedded in JKQTPlotter. All examples above use the graph class `JKQTPXFunctionLineGraph`, which plots a function `y=f(x)`. If you want to plot a function `x=f(y)`, you can use the class `JKQTPYFunctionLineGraph` instead. If in the examples above, we exchange all `JKQTPXFunctionLineGraph` for `JKQTPYFunctionLineGraph`, the graphs will be rotated by 90 degree, as all functions are interpreted as `x=f(y)`: ![functionplot_fy](https://raw.githubusercontent.com/jkriege2/JKQtPlotter/master/screenshots/functionplot_fy.png) This example describes how to draw 1D functions. For an example of how to draw 2D parametric curves `[x,y]=f(t)`, see [examples/evalcurve](https://github.com/jkriege2/JKQtPlotter/tree/master/examples/evalcurve) .