/* Copyright (c) 2008-2022 Jan W. Krieger () This software is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation, either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License (LGPL) for more details. You should have received a copy of the GNU Lesser General Public License (LGPL) along with this program. If not, see . */ #ifndef jkqtpevaluatedfunctionbase_H #define jkqtpevaluatedfunctionbase_H #include #include #include #include "jkqtplotter/graphs/jkqtpscatter.h" #include "jkqtplotter/jkqtpgraphsbasestylingmixins.h" #include "jkqtplotter/jkqtplotter_imexport.h" #include "jkqtcommon/jkqtpgeometrytools.h" #include /** \brief Base class for graph classes that evaluate a mathematical function (e.g. defined as a C-function), * using an adaptive plotting algorithm from JKQTPAdaptiveFunctionGraphEvaluator * \ingroup jkqtplotter_functiongraphs * * This class always plots a general 2D-graph \f$ [x,y]=\vec{f}(t) \f$ , which is calculated in dependence of * a parameter \f$ t \f$ . This parametrization is general enough to cover the cases of parametric function, as well as * x- and y-dependent function graphs: * - plot a function \f$ f(x) \f$ i.e. the plot points will be \f$ [x, f(x)] \f$ * and the value rage will be the x-axis range. This is implemented by e.g. JKQTPXFunctionLineGraph. * - plot a function \f$ f(y) \f$ i.e. the plot points will be \f$ [f(y), y] \f$ * and the value rage will be the y-axis range. This is implemented by e.g. JKQTPYFunctionLineGraph. * - plot a function \f$ [x,y]=\vec{f}(t) \f$ i.e. the plot points will be \f$ \vec{f}(t) \f$ * and the value rage will be a user-defined range for \f$ gt \f$. * This is implemented by e.g. JKQTPXYFunctionLineGraph. * . * * In order to implement a special cas, one has to override/implement buildPlotFunctorSpec(), which * returns a functor and a value-range that can represent the cases above. * * * This class uses the intelligent plotting algorithm for functions, implemented in JKQTPAdaptiveFunctionGraphEvaluator. * It starts by sampling the function at minSamples positions. Then each function interval is bisected recursively if * necessary. To do so the function is evaluated at the mid point and the slopes \f$ \alpha_{\mbox{left}} \f$ * and \f$ \alpha_{\mbox{right}} \f$ of the two linear segments are compared. the midpoint is added * to the graph if \f[ \left|\alpha_{\mbox{right}}-\alpha_{\mbox{left}}\right|>\mbox{slopeTolerance} \f] * In addition all sampling points except minimum and maximum are beeing shifted by a random fraction their * distance to the other points. This helps to prevent beats when sampling periodic functions. * * Finally the obtained data is cleaned up to reduce the amount of points, by deleting a point, when it leads to an * angle between consecutive line-segments of less than dataCleanupMaxAllowedAngleDegree. * * * * * * \see JKQTPAdaptiveFunctionGraphEvaluator, JKQTPXFunctionLineGraph, JKQTPYFunctionLineGraph, JKQTPXYFunctionLineGraph */ class JKQTPLOTTER_LIB_EXPORT JKQTPEvaluatedFunctionGraphBase: public JKQTPGraph { Q_OBJECT public: /** \brief class constructor */ explicit JKQTPEvaluatedFunctionGraphBase(JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ explicit JKQTPEvaluatedFunctionGraphBase(JKQTPlotter* parent); /** \brief class destructor */ virtual ~JKQTPEvaluatedFunctionGraphBase() ; /** \copydoc JKQTPPlotElement::getXMinMax() */ virtual bool getXMinMax(double& minx, double& maxx, double& smallestGreaterZero) override; /** \copydoc JKQTPPlotElement::getYMinMax() */ virtual bool getYMinMax(double& miny, double& maxy, double& smallestGreaterZero) override; /** \brief sets the params as a pointer to an internal COPY of the given vector (not the data of the vector, as then the size would be unknown!!!) */ virtual void setParams(const QVector& params); /** \brief sets the params from a copy of the given array of length \a N */ void setCopiedParams(const double* params, int N); /** \brief returns the currently set internal parameter vector */ const QVector& getInternalParams() const; /** \brief returns the currently set internal parameter vector */ QVector& getInternalParams(); /** \copydoc parameterColumn */ int getParameterColumn() const; /** \copydoc JKQTPGraph::usesColumn() */ virtual bool usesColumn(int c) const override; /** \copydoc minSamples */ unsigned int getMinSamples() const; /** \copydoc maxRefinementDegree */ unsigned int getMaxRefinementDegree() const; /** \copydoc slopeTolerance */ double getSlopeTolerance() const; /** \copydoc minPixelPerSample */ double getMinPixelPerSample() const; /** \copydoc dataCleanupMaxAllowedAngleDegree */ double getDataCleanupMaxAllowedAngleDegree() const; /** \copydoc displaySamplePoints */ bool getDisplaySamplePoints() const; public Q_SLOTS: /** \copydoc minSamples */ void setMinSamples(const unsigned int & __value); /** \copydoc maxRefinementDegree */ void setMaxRefinementDegree(const unsigned int & __value); /** \copydoc slopeTolerance */ void setSlopeTolerance(double __value); /** \copydoc minPixelPerSample */ void setMinPixelPerSample(double __value); /** \copydoc dataCleanupMaxAllowedAngleDegree */ void setDataCleanupMaxAllowedAngleDegree(double __value); /** \copydoc displaySamplePoints */ void setDisplaySamplePoints(bool __value); /** \brief set an internal parameter vector as function parameters, initialized with {p1} */ void setParamsV(double p1); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2} */ void setParamsV(double p1, double p2); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3} */ void setParamsV(double p1, double p2, double p3); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3,p4} */ void setParamsV(double p1, double p2, double p3, double p4); /** \brief set an internal parameter vector as function parameters, initialized with {p1,p2,p3,p4,p5} */ void setParamsV(double p1, double p2, double p3, double p4, double p5); /** \copydoc parameterColumn */ void setParameterColumn(int __value); /** \copydoc parameterColumn */ void setParameterColumn (size_t __value); protected: /** \brief specifies an internal plot functor \see buildPlotFunctor() */ struct PlotFunctorSpec { /** brief construct an in-valid PlotFunctorSpec ... will become valid, by assigning a non-zero range and a plot-function */ PlotFunctorSpec(); /** \brief calculates the points \f$ [x,y] \f$ on the function graph, in dependence on * a dependent parameter variable, could be e.g. \f$ [x, f(x)] \f$ for plotting * a function \f$ f(x) \f$ over the x-axis. */ std::function func; /** \brief lower bound for the dependent parameter variable of func */ double range_start; /** \brief upper bound for the dependent parameter variable of func */ double range_end; bool isValid() const; }; /** \brief this function returns a functor that is used to generate the plot data * in coordinate space, based on a range of the dependent variable in coordinate space. * In addition it also contains the value range over which to evaluate the functor PlotFunctorSpec::func * * This function has to be overridden by each class. Depending on the way that class defines * the actual plot function, this function has to compose its return type in different ways. * The three most common ways are: * - plot a function \f$ f(x) \f$ i.e. the plot points will be \f$ [x, f(x)] \f$ * and the value rage will be the x-axis range. This is implemented by e.g. JKQTPXFunctionLineGraph. * - plot a function \f$ f(y) \f$ i.e. the plot points will be \f$ [f(y), y] \f$ * and the value rage will be the y-axis range. This is implemented by e.g. JKQTPYFunctionLineGraph. * - plot a function \f$ [x,y]=\vec{f}(t) \f$ i.e. the plot points will be \f$ \vec{f}(t) \f$ * and the value rage will be a user-defined range for \f$ gt \f$. * This is implemented by e.g. JKQTPXYFunctionLineGraph. * . */ virtual PlotFunctorSpec buildPlotFunctorSpec() =0; /** \brief ensure that current function parameters for a plot function (which may stem from different sources, as direct data, a datastore column ...) are stored in iparams */ virtual void collectParameters(); /** \brief draw all the sample points in data as small symbols */ void drawSamplePoints(JKQTPEnhancedPainter &painter, QColor graphColor); /** \brief fill the data array with data from the function plotFunction */ virtual void createPlotData( bool collectParams=true) ; /** \brief if set, the values from this datatsore column are used for the parameters \c p1 , \c p2 , \c p3 , ... of the plot function */ int parameterColumn; /** \brief internal storage for the current function parameters for plotFunction (which may stem from different sources, as direct data, a datastore column ...) */ QVector iparams; /** \brief plot data calculated by createPlotData(), i.e. the datapoints \f$ \mbox{transform}\left(x, y=f(x, \vec{p})\right) \f$ to be plotted */ QVector data; /** \brief the minimum number of points to evaluate the function at */ unsigned int minSamples; /** \brief the maximum number of recursive refinement steps * * each step bisects the interval \f$ [a, b] \f$ into two halfes. So the maximum number * of points plotted at all are thus: * \f[ \mbox{minSamples} \cdot 2^{\mbox{maxRefinementDegree}} \f] */ unsigned int maxRefinementDegree; /** \brief the tolerance for the difference of two subsequent slopes */ double slopeTolerance; /** \brief create one sample at least every \a minPixelPerSample pixels */ double minPixelPerSample; /** \brief in the clean-up step of plot-data creation, a point is removed from the data, if * it caused its neighboring line-segments to form an angle less than this value, given in degrees. */ double dataCleanupMaxAllowedAngleDegree; /** \brief if true [default: off] display the points where the function has been sampled */ bool displaySamplePoints; }; /** \brief extends JKQTPEvaluatedFunctionGraphBase with some basic properties (e.g. function parameters) * for a second function that calculates an error (for drawing error indicators) * \ingroup jkqtplotter_functiongraphs * * When implementing this, you will have to implement buildErrorFunctorSpec() in addition to * JKQTPEvaluatedFunctionGraphBase::buildPlotFunctorSpec()! * * \see JKQTPEvaluatedFunctionGraphBase */ class JKQTPLOTTER_LIB_EXPORT JKQTPEvaluatedFunctionWithErrorsGraphBase: public JKQTPEvaluatedFunctionGraphBase { Q_OBJECT public: /** \brief class constructor */ explicit JKQTPEvaluatedFunctionWithErrorsGraphBase(JKQTBasePlotter* parent=nullptr); /** \brief class constructor */ explicit JKQTPEvaluatedFunctionWithErrorsGraphBase(JKQTPlotter* parent); /** \brief class destructor */ virtual ~JKQTPEvaluatedFunctionWithErrorsGraphBase(); /** \copydoc errorParameterColumn */ int getErrorParameterColumn() const; /** \brief returns the currently set internal parameter vector */ const QVector& getInternalErrorParams() const; /** \brief returns the currently set internal parameter vector */ QVector& getInternalErrorParams(); /** \copydoc JKQTPGraph::usesColumn() */ virtual bool usesColumn(int c) const override; public Q_SLOTS: /** \brief sets the error params as a pointer to an internal COPY of the given vector (not the data of the vector, as then the size would be unknown!!!) */ void setErrorParams(const QVector& errorParams); /** \copydoc errorParameterColumn */ void setErrorParameterColumn(int __value); /** \copydoc errorParameterColumn */ void setErrorParameterColumn (size_t __value); /** \brief set the internal error function parameters to {p1} */ void setErrorParamsV(double p1); /** \brief set the internal error function parameters to {p1,p2} */ void setErrorParamsV(double p1, double p2); /** \brief set the internal error function parameters to {p1,p2,p3} */ void setErrorParamsV(double p1, double p2, double p3); /** \brief set the internal error function parameters to {p1,p2,p3,p4} */ void setErrorParamsV(double p1, double p2, double p3, double p4); /** \brief set the internal error function parameters to {p1,p2,p3,p4,p5} */ void setErrorParamsV(double p1, double p2, double p3, double p4, double p5); protected: /** \brief ensure that current function parameters for plotFunction (which may stem from different sources, as direct data, a datastore column ...) are stored in iparams and ierrorparams */ virtual void collectParameters() override; /** \brief same as JKQTPEvaluatedFunctionGraphBase::buildPlotFunctorSpec(), but for error functions. * * The functor, returned by this function should calculate the error of the function (in x- and y-direction) * for every value \f$ t \f$ of the actual function. * * The parameter range is the same as for JKQTPEvaluatedFunctionGraphBase::buildPlotFunctorSpec() * * \see JKQTPEvaluatedFunctionGraphBase::buildPlotFunctorSpec() */ virtual std::function buildErrorFunctorSpec() =0; /** \brief if set, the values from this datatsore column are used for the parameters \c p1 , \c p2 , \c p3 , ... of the error plot function */ int errorParameterColumn; /** \brief internal storage for the current error function parameters for errorPlotFunction (which may stem from different sources, as direct data, a datastore column ...) */ QVector ierrorparams; }; #endif // jkqtpevaluatedfunctionbase_H