mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-11-15 10:05:47 +08:00
BREAKING: improved speed of median/quantile calculation, by only partially sorting
This commit is contained in:
parent
be48ed84ba
commit
b2aad7ca20
@ -811,7 +811,75 @@ inline double jkqtpstatMedianOfSortedVector(const TVector& data, size_t* Noutput
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/*! \brief calculates the median of a given data range \a first ... \a last, this version partially sorts the range (i.e. no internal copy and checking for NAN-values is performed!)
|
||||||
|
\ingroup jkqtptools_math_statistics_basic
|
||||||
|
|
||||||
|
\tparam InputIt standard iterator type of \a first and \a last.
|
||||||
|
\param first iterator pointing to the first item in the dataset to use \f$ X_1 \f$
|
||||||
|
\param last iterator pointing behind the last item in the dataset to use \f$ X_N \f$
|
||||||
|
\return the median of the data returned between \a first and \a last (excluding invalid doubles).
|
||||||
|
If the given range \a first ... \a last is empty, NAN is returned
|
||||||
|
|
||||||
|
\note This operation implies uses std::nth_element() to calculate the median in linear time O(N)!
|
||||||
|
The given range is partially sorted after the call!
|
||||||
|
|
||||||
|
*/
|
||||||
|
template <class InputIt>
|
||||||
|
inline double jkqtpstatMedianAndPartialSort(InputIt first, InputIt last) {
|
||||||
|
// filter out any NAN-values:
|
||||||
|
const size_t n=std::distance(first,last);
|
||||||
|
|
||||||
|
// handle empty range
|
||||||
|
if (n<=0) {
|
||||||
|
return JKQTP_DOUBLE_NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate median using nth_element() in linear timme!
|
||||||
|
const auto middleItr = first + n / 2;
|
||||||
|
std::nth_element(first, middleItr, last);
|
||||||
|
if (n % 2 == 0) {
|
||||||
|
// since nth_element() performs partial sorting,
|
||||||
|
// "All of the elements before this new nth element are less than or equal to the elements after the new nth element." (from cppreference.com)
|
||||||
|
const auto leftMiddleItr = std::max_element(first, middleItr);
|
||||||
|
// the second elemnt to average is the maximum on the left of middleItr!
|
||||||
|
return (*leftMiddleItr + *middleItr) / 2.0;
|
||||||
|
} else {
|
||||||
|
return *middleItr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*! \brief calculates the median of a given data range \a first ... \a last
|
||||||
|
\ingroup jkqtptools_math_statistics_basic
|
||||||
|
|
||||||
|
\tparam InputIt standard iterator type of \a first and \a last.
|
||||||
|
\param first iterator pointing to the first item in the dataset to use \f$ X_1 \f$
|
||||||
|
\param last iterator pointing behind the last item in the dataset to use \f$ X_N \f$
|
||||||
|
\param[out] Noutput optionally returns the number of accumulated valid values in this variable
|
||||||
|
\return the median of the data returned between \a first and \a last (excluding invalid doubles).
|
||||||
|
If the given range \a first ... \a last is empty, NAN is returned
|
||||||
|
|
||||||
|
\note This operation implies an internal copy of the data, and then uses std::nth_element() to calculate the median in linear time O(N)!
|
||||||
|
|
||||||
|
\note Each value is the specified range is converted to a double using jkqtp_todouble().
|
||||||
|
Entries in the range that are invalid double (using JKQTPIsOKFloat() )
|
||||||
|
are ignored when calculating.
|
||||||
|
*/
|
||||||
|
template <class InputIt>
|
||||||
|
inline double jkqtpstatMedian(InputIt first, InputIt last, size_t* Noutput=nullptr) {
|
||||||
|
// filter out any NAN-values:
|
||||||
|
std::vector<double> dataFiltered;
|
||||||
|
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
||||||
|
const size_t n=dataFiltered.size();
|
||||||
|
|
||||||
|
// handle empty range
|
||||||
|
if (n<=0) {
|
||||||
|
if (Noutput) *Noutput=0;
|
||||||
|
return JKQTP_DOUBLE_NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculate median using nth_element() in linear timme!
|
||||||
|
return jkqtpstatMedianAndPartialSort(dataFiltered.begin(), dataFiltered.end());
|
||||||
|
}
|
||||||
|
|
||||||
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
|
/*! \brief calculates the Five-Number Statistical Summary (minimum, median, maximum and two user-defined quantiles (as well as derived from these the inter quartile range)) of a sorted vector
|
||||||
\ingroup jkqtptools_math_statistics_basic
|
\ingroup jkqtptools_math_statistics_basic
|
||||||
@ -1079,29 +1147,6 @@ inline JKQTPStat5NumberStatistics jkqtpstat5NumberStatistics(InputIt first, Inpu
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*! \brief calculates the median of a given data range \a first ... \a last
|
|
||||||
\ingroup jkqtptools_math_statistics_basic
|
|
||||||
|
|
||||||
\tparam InputIt standard iterator type of \a first and \a last.
|
|
||||||
\param first iterator pointing to the first item in the dataset to use \f$ X_1 \f$
|
|
||||||
\param last iterator pointing behind the last item in the dataset to use \f$ X_N \f$
|
|
||||||
\param[out] Noutput optionally returns the number of accumulated valid values in this variable
|
|
||||||
\return the median of the data returned between \a first and \a last (excluding invalid doubles).
|
|
||||||
If the given range \a first ... \a last is empty, NAN is returned
|
|
||||||
|
|
||||||
\note This operation implies an internal copy of the data, as well as sorting it!
|
|
||||||
|
|
||||||
\note Each value is the specified range is converted to a double using jkqtp_todouble().
|
|
||||||
Entries in the range that are invalid double (using JKQTPIsOKFloat() )
|
|
||||||
are ignored when calculating.
|
|
||||||
*/
|
|
||||||
template <class InputIt>
|
|
||||||
inline double jkqtpstatMedian(InputIt first, InputIt last, size_t* Noutput=nullptr) {
|
|
||||||
std::vector<double> dataFiltered;
|
|
||||||
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
|
||||||
std::sort(dataFiltered.begin(), dataFiltered.end());
|
|
||||||
return jkqtpstatMedianOfSortedVector(dataFiltered, Noutput);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/*! \brief calculates the \a quantile -th quantile of a given data range \a first ... \a last
|
/*! \brief calculates the \a quantile -th quantile of a given data range \a first ... \a last
|
||||||
@ -1125,13 +1170,14 @@ template <class InputIt>
|
|||||||
inline double jkqtpstatQuantile(InputIt first, InputIt last, double quantile, size_t* Noutput=nullptr) {
|
inline double jkqtpstatQuantile(InputIt first, InputIt last, double quantile, size_t* Noutput=nullptr) {
|
||||||
std::vector<double> dataFiltered;
|
std::vector<double> dataFiltered;
|
||||||
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
||||||
std::sort(dataFiltered.begin(), dataFiltered.end());
|
|
||||||
if (dataFiltered.size()<=0) {
|
if (dataFiltered.size()<=0) {
|
||||||
if (Noutput) *Noutput=0;
|
if (Noutput) *Noutput=0;
|
||||||
return JKQTP_DOUBLE_NAN;
|
return JKQTP_DOUBLE_NAN;
|
||||||
} else {
|
} else {
|
||||||
if (Noutput) *Noutput=dataFiltered.size();
|
if (Noutput) *Noutput=dataFiltered.size();
|
||||||
return dataFiltered[jkqtp_bounded<size_t>(0, static_cast<size_t>(quantile*static_cast<double>(dataFiltered.size()-1)), dataFiltered.size()-1)];
|
auto qelement=dataFiltered.begin()+jkqtp_bounded<size_t>(0, static_cast<size_t>(quantile*static_cast<double>(dataFiltered.size()-1)), dataFiltered.size()-1);
|
||||||
|
std::nth_element(dataFiltered.begin(), qelement, dataFiltered.end());
|
||||||
|
return *qelement;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1164,20 +1210,18 @@ template <class InputIt>
|
|||||||
inline double jkqtpstatMAD(InputIt first, InputIt last, double* median=nullptr, size_t* Noutput=nullptr) {
|
inline double jkqtpstatMAD(InputIt first, InputIt last, double* median=nullptr, size_t* Noutput=nullptr) {
|
||||||
std::vector<double> dataFiltered;
|
std::vector<double> dataFiltered;
|
||||||
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
jkqtpstatFilterGoodFloat(first, last, std::back_inserter(dataFiltered));
|
||||||
std::sort(dataFiltered.begin(), dataFiltered.end());
|
|
||||||
if (dataFiltered.size()<=0) {
|
if (dataFiltered.size()<=0) {
|
||||||
if (Noutput) *Noutput=0;
|
if (Noutput) *Noutput=0;
|
||||||
if (median) *median=JKQTP_DOUBLE_NAN;
|
if (median) *median=JKQTP_DOUBLE_NAN;
|
||||||
return JKQTP_DOUBLE_NAN;
|
return JKQTP_DOUBLE_NAN;
|
||||||
} else {
|
} else {
|
||||||
if (Noutput) *Noutput=dataFiltered.size();
|
if (Noutput) *Noutput=dataFiltered.size();
|
||||||
double med=jkqtpstatMedianOfSortedVector(dataFiltered);
|
const double med=jkqtpstatMedianAndPartialSort(dataFiltered.begin(), dataFiltered.end());
|
||||||
if (median) *median=med;
|
if (median) *median=med;
|
||||||
for(double& v: dataFiltered) {
|
for(double& v: dataFiltered) {
|
||||||
v=fabs(v-med);
|
v=fabs(v-med);
|
||||||
}
|
}
|
||||||
std::sort(dataFiltered.begin(), dataFiltered.end());
|
return jkqtpstatMedianAndPartialSort(dataFiltered.begin(), dataFiltered.end());
|
||||||
return jkqtpstatMedianOfSortedVector(dataFiltered);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -16,4 +16,5 @@ find_package(Qt${QT_VERSION_MAJOR} COMPONENTS Test REQUIRED)
|
|||||||
|
|
||||||
message( STATUS ".. BUILDING UNIT TESTS FOR JKQTCommon:" )
|
message( STATUS ".. BUILDING UNIT TESTS FOR JKQTCommon:" )
|
||||||
add_subdirectory(jkqtcommmon)
|
add_subdirectory(jkqtcommmon)
|
||||||
|
add_subdirectory(jkqtmath)
|
||||||
|
|
||||||
|
7
tests/jkqtmath/CMakeLists.txt
Normal file
7
tests/jkqtmath/CMakeLists.txt
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
cmake_minimum_required(VERSION 3.23)
|
||||||
|
|
||||||
|
set(CMAKE_INCLUDE_CURRENT_DIR ON)
|
||||||
|
set(CMAKE_AUTOMOC ON)
|
||||||
|
|
||||||
|
jkqtplotter_add_jkqtcommmon_test(jkqtpstatisticstools_test)
|
||||||
|
|
78
tests/jkqtmath/jkqtpstatisticstools_test.cpp
Normal file
78
tests/jkqtmath/jkqtpstatisticstools_test.cpp
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
#include <QObject>
|
||||||
|
#include <QtTest>
|
||||||
|
#include "jkqtmath/jkqtpstatisticstools.h"
|
||||||
|
|
||||||
|
#ifndef QCOMPARE_EQ
|
||||||
|
#define QCOMPARE_EQ(A,B) if (!static_cast<bool>((A)==(B))) {qDebug()<<QTest::toString(A)<< "!=" << QTest::toString(B); } QVERIFY((A)==(B))
|
||||||
|
#endif
|
||||||
|
#ifndef QVERIFY_THROWS_NO_EXCEPTION
|
||||||
|
#define QVERIFY_THROWS_NO_EXCEPTION(B) B
|
||||||
|
#endif
|
||||||
|
#ifndef QVERIFY_THROWS_EXCEPTION
|
||||||
|
#define QVERIFY_THROWS_EXCEPTION(type, A) QVERIFY_EXCEPTION_THROWN(A, type)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class JKQTPStatisticsToolsTest : public QObject
|
||||||
|
{
|
||||||
|
Q_OBJECT
|
||||||
|
|
||||||
|
public:
|
||||||
|
inline JKQTPStatisticsToolsTest() {
|
||||||
|
}
|
||||||
|
|
||||||
|
inline ~JKQTPStatisticsToolsTest() {
|
||||||
|
}
|
||||||
|
|
||||||
|
private slots:
|
||||||
|
inline void test_jkqtpstatMedian() {
|
||||||
|
const std::vector<double> empty;
|
||||||
|
const std::vector<double> oneel = {1.23};
|
||||||
|
const std::vector<double> twoel = {2, 1};
|
||||||
|
const std::vector<double> threeel = {3, 2, 1};
|
||||||
|
const std::vector<double> fourel = {4, 2, 1, 3};
|
||||||
|
const std::vector<double> fourelnan = {4, 1, JKQTP_NAN, 2, JKQTP_NAN, JKQTP_NAN, 3};
|
||||||
|
QCOMPARE_EQ(JKQTPIsOKFloat(jkqtpstatMedian(empty.begin(), empty.end())),false);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedian(oneel.begin(), oneel.end()),1.23);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedian(twoel.begin(), twoel.end()),(1.0+2.0)/2.0);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedian(threeel.begin(), threeel.end()),2.0);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedian(fourel.begin(), fourel.end()),(2.0+3.0)/2.0);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedian(fourelnan.begin(), fourelnan.end()),(2.0+3.0)/2.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void test_jkqtpstatMedianOfSortedVector() {
|
||||||
|
const std::vector<double> empty;
|
||||||
|
const std::vector<double> oneel = {1.23};
|
||||||
|
const std::vector<double> twoel = {1, 2};
|
||||||
|
const std::vector<double> threeel = {1, 2, 3};
|
||||||
|
const std::vector<double> fourel = {1, 2, 3, 4};
|
||||||
|
const std::vector<double> fourelnan = {1, JKQTP_NAN, 2, JKQTP_NAN, 3, 4, JKQTP_NAN};
|
||||||
|
QCOMPARE_EQ(JKQTPIsOKFloat(jkqtpstatMedianOfSortedVector(empty)),false);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedianOfSortedVector(oneel),oneel[0]);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedianOfSortedVector(twoel),(twoel[0]+twoel[1])/2.0);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedianOfSortedVector(threeel),threeel[1]);
|
||||||
|
QCOMPARE_EQ(jkqtpstatMedianOfSortedVector(fourel),(fourel[1]+fourel[2])/2.0);
|
||||||
|
QCOMPARE_EQ(JKQTPIsOKFloat(jkqtpstatMedianOfSortedVector(fourelnan)),false);
|
||||||
|
}
|
||||||
|
inline void test_jkqtpstatQuantile() {
|
||||||
|
const std::vector<double> empty;
|
||||||
|
const std::vector<double> oneel = {1.23};
|
||||||
|
const std::vector<double> twoel = {2, 1};
|
||||||
|
const std::vector<double> threeel = {3, 2, 1};
|
||||||
|
const std::vector<double> fourel = {4, 2, 1, 3};
|
||||||
|
const std::vector<double> fourelnan = {4, 1, JKQTP_NAN, 2, JKQTP_NAN, JKQTP_NAN, 3};
|
||||||
|
QCOMPARE_EQ(JKQTPIsOKFloat(jkqtpstatQuantile(empty.begin(), empty.end(),0.25)), false);
|
||||||
|
QCOMPARE_EQ(jkqtpstatQuantile(oneel.begin(), oneel.end(),0.25),1.23);
|
||||||
|
QCOMPARE_EQ(jkqtpstatQuantile(twoel.begin(), twoel.end(),0.33),1);
|
||||||
|
QCOMPARE_EQ(jkqtpstatQuantile(threeel.begin(), threeel.end(), 0.33),1.0);
|
||||||
|
QCOMPARE_EQ(jkqtpstatQuantile(fourel.begin(), fourel.end(), 0.25),1);
|
||||||
|
QCOMPARE_EQ(jkqtpstatQuantile(fourelnan.begin(), fourelnan.end(), 0.25),1);
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
QTEST_APPLESS_MAIN(JKQTPStatisticsToolsTest)
|
||||||
|
|
||||||
|
#include "jkqtpstatisticstools_test.moc"
|
Loading…
Reference in New Issue
Block a user