2019-01-13 01:53:16 +08:00
/** \example jkqtplotter_simpletest_rgbimageplot_opencv.cpp
2019-01-20 23:15:10 +08:00
* JKQTPlotter : Examples : Simple RGB image plot , showing a 3 - channel OpenCV cv : : Mat
2019-01-13 01:53:16 +08:00
*
2019-01-20 23:15:10 +08:00
* \ ref JKQTPlotterImagePlotRGBOpenCV
2019-01-13 01:53:16 +08:00
*/
2018-12-29 00:46:47 +08:00
# include <QApplication>
# include <cmath>
# include "jkqtplotter/jkqtplotter.h"
# include "jkqtplotter/jkqtpgraphs.h"
# include "jkqtplotter/jkqtpgraphsimage.h"
# include "jkqtplotter/jkqtpopencvinterface.h"
# include <opencv2/imgcodecs.hpp>
int main ( int argc , char * argv [ ] )
{
QApplication app ( argc , argv ) ;
2019-01-20 23:15:10 +08:00
JKQTPlotter plot ;
2018-12-29 00:46:47 +08:00
// 1. create a plotter window and get a pointer to the internal datastore (for convenience)
2019-01-26 03:16:04 +08:00
plot . getPlotter ( ) - > setUseAntiAliasingForGraphs ( true ) ; // nicer (but slower) plotting
plot . getPlotter ( ) - > setUseAntiAliasingForSystem ( true ) ; // nicer (but slower) plotting
plot . getPlotter ( ) - > setUseAntiAliasingForText ( true ) ; // nicer (but slower) text rendering
2019-01-20 17:49:29 +08:00
JKQTPDatastore * ds = plot . getDatastore ( ) ;
2018-12-29 00:46:47 +08:00
// 2. now we open a BMP-file and load it into an OpenCV cv::Mat
cv : : Mat picture = cv : : imread ( " example.bmp " ) ;
2019-01-20 23:15:10 +08:00
// 3. make data available to JKQTPlotter by adding it to the internal datastore.
2018-12-29 00:46:47 +08:00
// In this step the contents of each channel of the openCV cv::Mat is copied into a column
// of the datastore in row-major order
2019-01-20 17:49:29 +08:00
size_t cPictureR = JKQTPCopyCvMatToColumn ( ds , picture , " R-channel " , 2 ) ;
size_t cPictureG = JKQTPCopyCvMatToColumn ( ds , picture , " G-channel " , 1 ) ;
size_t cPictureB = JKQTPCopyCvMatToColumn ( ds , picture , " B-channel " , 0 ) ;
2018-12-29 00:46:47 +08:00
// 4. create a graph (JKQTPColumnRGBMathImage) with the columns created above as data
JKQTPColumnRGBMathImage * graph = new JKQTPColumnRGBMathImage ( & plot ) ;
graph - > set_title ( " " ) ;
// set size of the data (the datastore does not contain this info, as it only manages 1D columns of data and this is used to assume a row-major ordering
graph - > set_Nx ( picture . cols ) ;
graph - > set_Ny ( picture . rows ) ;
// where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner)
graph - > set_x ( 0 ) ;
graph - > set_y ( 0 ) ;
// width and height of the image in plot-axis-coordinates
graph - > set_width ( picture . cols ) ;
graph - > set_height ( picture . rows ) ;
// image column with the data
graph - > set_imageRColumn ( cPictureR ) ;
graph - > set_imageGColumn ( cPictureG ) ;
graph - > set_imageBColumn ( cPictureB ) ;
// determine min/max of each channel manually
graph - > set_imageMinR ( 0 ) ;
graph - > set_imageMaxR ( 255 ) ;
graph - > set_imageMinG ( 0 ) ;
graph - > set_imageMaxG ( 255 ) ;
graph - > set_imageMinB ( 0 ) ;
graph - > set_imageMaxB ( 255 ) ;
// 5. add the graphs to the plot, so it is actually displayed
plot . addGraph ( graph ) ;
// 6. set axis labels
2019-01-26 03:16:04 +08:00
plot . getXAxis ( ) - > setAxisLabel ( " x [pixels] " ) ;
plot . getYAxis ( ) - > setAxisLabel ( " y [pixels] " ) ;
2018-12-29 00:46:47 +08:00
// 7. fix axis aspect ratio to width/height, so pixels are square
2019-01-26 03:16:04 +08:00
plot . getPlotter ( ) - > setMaintainAspectRatio ( true ) ;
plot . getPlotter ( ) - > setAspectRatio ( double ( picture . cols ) / double ( picture . rows ) ) ;
2018-12-29 00:46:47 +08:00
// 8. autoscale the plot so the graph is contained
plot . zoomToFit ( ) ;
// show plotter and make it a decent size
plot . show ( ) ;
plot . resize ( 800 , 600 ) ;
plot . setWindowTitle ( " JKQTPColumnMathImage " ) ;
return app . exec ( ) ;
}