JKQtPlotter/examples/datastore_groupedstat/datastore_groupedstat.cpp

270 lines
15 KiB
C++
Raw Normal View History

/** \example datastore_groupedstat.cpp
* Explains how to use the internal statistics library (see \ref jkqtptools_statistics ) together with JKQTPDatastore to generate grouped statistics (i.e. calculates errorbars or boxplots from groups of datapoints in a x/y-dataset).
*
* \ref JKQTPlotterBasicJKQTPDatastoreStatisticsGroupedStat
*/
2022-08-27 04:32:48 +08:00
#include "jkqtpexampleapplication.h"
#include <QApplication>
#include "jkqtplotter/jkqtplotter.h"
2019-06-20 22:06:31 +08:00
#include "jkqtplotter/graphs/jkqtpscatter.h"
#include "jkqtplotter/graphs/jkqtpbarchart.h"
#include "jkqtplotter/graphs/jkqtpstatisticsadaptors.h"
#include "jkqtcommon_statistics_and_math/jkqtpstatisticstools.h"
#include "jkqtcommon/jkqtpstringtools.h"
#include <random>
#include <cmath>
#include <vector>
int main(int argc, char* argv[])
{
2022-08-27 04:32:48 +08:00
JKQTPAppSettingController highDPIController(argc, argv);
JKQTPExampleApplication app(argc, argv);
// 1. create a window with several plotters and get a pointer to the internal datastores (for convenience)
QWidget mainWidget;
QGridLayout* lay;
mainWidget.setLayout(lay=new QGridLayout);
JKQTPlotter* plotbarchart=new JKQTPlotter(&mainWidget);
plotbarchart->getPlotter()->setPlotLabel("Barcharts");
JKQTPDatastore* datastore1=plotbarchart->getDatastore();
lay->addWidget(plotbarchart,0,0);
JKQTPlotter* plotboxplot=new JKQTPlotter(datastore1, &mainWidget);
plotboxplot->getPlotter()->setPlotLabel("Boxplots");
lay->addWidget(plotboxplot,0,1);
JKQTPlotter* plotscattererrors=new JKQTPlotter(datastore1, &mainWidget);
plotscattererrors->getPlotter()->setPlotLabel("Scatter Plot with Error Indicators");
lay->addWidget(plotscattererrors,0,2);
lay->setColumnStretch(0,1);
lay->setColumnStretch(1,1);
lay->setColumnStretch(2,2);
// 2. Barcharts from categorized data:
// 2.1. First we generate a dataset, which is going to be used for a barchart
// The datapoints consist of pairs <group,value>, where the groups are encoded
// by the numbers 1,2,3 and in each group, several measurements are taken
size_t colBarRawGroup=datastore1->addColumn("barchart, rawdata, group");
size_t colBarRawValue=datastore1->addColumn("barchart, rawdata, value");
// data for group 1
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.1);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.5);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 0.8);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.2);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.4);
// data for group 2
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.2);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.4);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 1.9);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.6);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.1);
// data for group 3
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.1);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.4);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 3.8);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.5);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 3.7);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.0);
// now some more datapoint, in mixed order
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 0.9);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.3);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.0);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.0);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.2);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.25);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.35);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 3.7);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 0.75);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 1.85);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.5);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 0.95);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 1.65);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 3, 4.1);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 1, 1.15);
datastore1->appendToColumns(colBarRawGroup, colBarRawValue, 2, 2.15);
// 2.2. This dataset can be visualized with a simple scatter plot:
JKQTPXYLineGraph* gScatterForBar;
plotbarchart->addGraph(gScatterForBar=new JKQTPXYLineGraph(plotbarchart));
gScatterForBar->setXYColumns(colBarRawGroup, colBarRawValue);
gScatterForBar->setDrawLine(false);
gScatterForBar->setSymbolType(JKQTPCross);
gScatterForBar->setSymbolSize(5);
gScatterForBar->setSymbolColor(QColorWithAlphaF(QColor("red"), 0.5));
// 2.3. Now we want to draw a barchart for every group, which indicates the
// average in each group. This is done using methods from the statistics
// library.
// First we need to group the data using jkqtpstatGroupData(), which assembles
// the data points in each group groupeddataBar
std::map<double, std::vector<double> > groupeddataBar;
jkqtpstatGroupData(datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup),
datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue),
groupeddataBar);
// now we can calculate the statistics for each group separately:
// Data is collected in two new columns
size_t colBarGroup=datastore1->addColumn("barchart, group");
size_t colBarAverage=datastore1->addColumn("barchart, group-average");
size_t colBarStdDev=datastore1->addColumn("barchart, group-stddev");
// Statistics is calculated by simply iterating over groupeddataBar
// and calling functions like jkqtpstatAverage() for each group
for (auto it=groupeddataBar.begin(); it!=groupeddataBar.end(); ++it) {
datastore1->appendToColumn(colBarGroup, it->first);
datastore1->appendToColumn(colBarAverage, jkqtpstatAverage(it->second.begin(), it->second.end()));
datastore1->appendToColumn(colBarStdDev, jkqtpstatStdDev(it->second.begin(), it->second.end()));
}
// 2.4. Finally the calculated groups are drawn
JKQTPBarVerticalErrorGraph* gBar;
plotbarchart->addGraph(gBar=new JKQTPBarVerticalErrorGraph(plotbarchart));
gBar->setXYColumns(colBarGroup, colBarAverage);
gBar->setYErrorColumn(static_cast<int>(colBarStdDev));
// 2.5. With the methods above we can also calculate more advanced statistics, like e.g. boxplots:
size_t colBarMedian=datastore1->addColumn("barchart, group-median");
size_t colBarMin=datastore1->addColumn("barchart, group-min");
size_t colBarMax=datastore1->addColumn("barchart, group-max");
size_t colBarQ25=datastore1->addColumn("barchart, group-Q25");
size_t colBarQ75=datastore1->addColumn("barchart, group-Q75");
for (auto it=groupeddataBar.begin(); it!=groupeddataBar.end(); ++it) {
datastore1->appendToColumn(colBarMedian, jkqtpstatMedian(it->second.begin(), it->second.end()));
datastore1->appendToColumn(colBarMin, jkqtpstatMinimum(it->second.begin(), it->second.end()));
datastore1->appendToColumn(colBarMax, jkqtpstatMaximum(it->second.begin(), it->second.end()));
datastore1->appendToColumn(colBarQ25, jkqtpstatQuantile(it->second.begin(), it->second.end(), 0.25));
datastore1->appendToColumn(colBarQ75, jkqtpstatQuantile(it->second.begin(), it->second.end(), 0.75));
}
// 2.6. The result can be plotted using JKQTPBoxplotVerticalGraph, which receives a column for each value class of the final plot:
JKQTPBoxplotVerticalGraph* gBoxplot;
plotboxplot->addGraph(gBoxplot=new JKQTPBoxplotVerticalGraph(plotboxplot));
gBoxplot->setPositionColumn(colBarGroup);
gBoxplot->setMinColumn(colBarMin);
gBoxplot->setMaxColumn(colBarMax);
gBoxplot->setMedianColumn(colBarMedian);
gBoxplot->setPercentile25Column(colBarQ25);
gBoxplot->setPercentile75Column(colBarQ75);
// 2.7. In order to safe yo the typing of the code above, shortcuts in the form of adaptors exist:
/*
jkqtpstatAddYErrorBarGraph(plotbarchart->getPlotter(),
datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup),
datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue));
jkqtpstatAddHBoxplotsAndOutliers(plotboxplot->getPlotter(),
datastore1->begin(colBarRawGroup), datastore1->end(colBarRawGroup),
datastore1->begin(colBarRawValue), datastore1->end(colBarRawValue));
*/
// 3. Scatterplots from categorized data:
// 3.1. First we generate a second dataset, which is going to be used for a scaterplot
// The datapoints consist of pairs <x,y>, that are based on a parabula with random
// deviations, both in x- and y-direction
size_t colScatterRawX=datastore1->addColumn("scatterplot, rawdata, x");
size_t colScatterRawY=datastore1->addColumn("scatterplot, rawdata, y");
std::random_device rd; // random number generators:
std::mt19937 gen{rd()};
std::normal_distribution<> d1{0,0.5};
const size_t N=100;
const double xmax=3.5;
for (size_t i=0; i<N; i++) {
const double x=(static_cast<double>(i)-static_cast<double>(N)/2.0)*xmax/(static_cast<double>(N)/2.0);
const double y=jkqtp_sqr(x)+2.0;
datastore1->appendToColumns(colScatterRawX, colScatterRawY, x+d1(gen), y+d1(gen));
}
// 3.2. Now we can also add the raw dataset to the plot for visualization:
JKQTPXYParametrizedScatterGraph* gScatterRaw;
plotscattererrors->addGraph(gScatterRaw=new JKQTPXYParametrizedScatterGraph(plotscattererrors));
gScatterRaw->setXYColumns(colScatterRawX, colScatterRawY);
gScatterRaw->setDrawLine(false);
gScatterRaw->setSymbolType(JKQTPCross);
gScatterRaw->setSymbolSize(5);
// 3.3. Now we want to draw a scatterchart of the data, where data-points should be grouped
// together, in x-intervals of width 0.5. From all the points in each interval, we calculate the
// in both x- and y-direction the average and standard deviation.
// First we need to group the data using jkqtpstatGroupData(), which assembles
// the data points in each group groupeddataScatter. For the custom grouping of the datapoints
// we use the optional functor provided to jkqtpstatGroupData(): We use jkqtpstatGroupingCustomRound1D()
// with given parameters 0.25 for the (center) location of the first bin and bin width 0.5. The functor
// is not built by hand (which would be possible using std::bind), but with the generator function
// jkqtpstatMakeGroupingCustomRound1D().
// in addition we use a variant of jkqtpstatGroupData(), which outputs a column with the category
// assigned to every data pair in the input data range
std::map<double, std::pair<std::vector<double>,std::vector<double> > > groupeddataScatter;
size_t colScatterRawGroup=datastore1->addColumn("scatterplot, rawdata, assigned-group");
jkqtpstatGroupData(datastore1->begin(colScatterRawX), datastore1->end(colScatterRawX),
datastore1->begin(colScatterRawY), datastore1->end(colScatterRawY),
datastore1->backInserter(colScatterRawGroup),
groupeddataScatter,
jkqtpstatMakeGroupingCustomRound1D(0.25, 0.5));
// The column colScatterRawGroup can now be used to color the scatter graph:
gScatterRaw->setColorColumn(colScatterRawGroup);
// now we can calculate the statistics for each group separately:
// Data is collected in two new columns
size_t colScatterXAvg=datastore1->addColumn("scatter, x, average");
size_t colScatterXStd=datastore1->addColumn("scatter, x, stddev");
size_t colScatterYAvg=datastore1->addColumn("scatter, y, average");
size_t colScatterYStd=datastore1->addColumn("scatter, y, stddev");
// Statistics is calculated by simply iterating over groupeddataScatter
// and calling functions like jkqtpstatAverage() for each group
for (auto it=groupeddataScatter.begin(); it!=groupeddataScatter.end(); ++it) {
datastore1->appendToColumn(colScatterXAvg, jkqtpstatAverage(it->second.first.begin(), it->second.first.end()));
datastore1->appendToColumn(colScatterXStd, jkqtpstatStdDev(it->second.first.begin(), it->second.first.end()));
datastore1->appendToColumn(colScatterYAvg, jkqtpstatAverage(it->second.second.begin(), it->second.second.end()));
datastore1->appendToColumn(colScatterYStd, jkqtpstatStdDev(it->second.second.begin(), it->second.second.end()));
}
// 3.4. Finally the calculated groups are drawn
JKQTPXYLineErrorGraph* gScatterErr;
plotscattererrors->addGraph(gScatterErr=new JKQTPXYLineErrorGraph(plotscattererrors));
gScatterErr->setXYColumns(colScatterXAvg, colScatterYAvg);
gScatterErr->setXErrorColumn(static_cast<int>(colScatterXStd));
gScatterErr->setYErrorColumn(static_cast<int>(colScatterYStd));
gScatterErr->setSymbolType(JKQTPFilledTriangle);
gScatterErr->setDrawLine(false);
// 3.5. also here an adaptor exists, which makes the task easier:
/*
jkqtpstatAddXYErrorLineGraph(plotscattererrors->getPlotter(),
datastore1->begin(colScatterRawX), datastore1->end(colScatterRawX),
datastore1->begin(colScatterRawY), datastore1->end(colScatterRawY),
jkqtpstatMakeGroupingCustomRound1D(0.25, 0.5));
*/
// autoscale the plot so the graph is contained
plotboxplot->synchronizeToMaster(plotbarchart, JKQTBasePlotter::sdXYAxes);
plotboxplot->zoomToFit();
plotboxplot->setGrid(false);
plotboxplot->setShowZeroAxes(false);
plotboxplot->getPlotter()->setKeyBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
plotbarchart->setAbsoluteY(0,5);
plotboxplot->setAbsoluteY(0,5);
plotbarchart->zoomToFit();
plotbarchart->setGrid(false);
plotbarchart->setShowZeroAxes(false);
plotbarchart->getPlotter()->setKeyBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
plotbarchart->moveGraphTop(gScatterForBar);
plotscattererrors->zoomToFit();
plotscattererrors->setGrid(false);
plotscattererrors->setShowZeroAxes(false);
plotscattererrors->getPlotter()->setKeyBackgroundColor(QColorWithAlphaF("white", 0.25), Qt::SolidPattern);
// show plotter and make it a decent size
mainWidget.show();
mainWidget.resize(1200,400);
return app.exec();
}