2019-01-13 01:53:16 +08:00
/** \example jkqtplotter_simpletest_imageplot_opencv.cpp
* Simple math image plot , showin a 1 - channel OpenCV cv : : Mat
*
2019-01-20 23:15:10 +08:00
* \ ref JKQTPlotterImagePlotOpenCV
2019-01-13 01:53:16 +08:00
*/
2018-12-29 00:46:47 +08:00
# include <QApplication>
# include <cmath>
# include "jkqtplotter/jkqtplotter.h"
# include "jkqtplotter/jkqtpgraphs.h"
# include "jkqtplotter/jkqtpgraphsimage.h"
# include "jkqtplotter/jkqtpopencvinterface.h"
# include <opencv/cv.h>
# ifndef M_PI
# define M_PI 3.14159265358979323846
# endif
int main ( int argc , char * argv [ ] )
{
QApplication app ( argc , argv ) ;
2019-01-20 23:15:10 +08:00
JKQTPlotter plot ;
2018-12-29 00:46:47 +08:00
// 1. create a plotter window and get a pointer to the internal datastore (for convenience)
2019-01-26 03:16:04 +08:00
plot . getPlotter ( ) - > setUseAntiAliasingForGraphs ( true ) ; // nicer (but slower) plotting
plot . getPlotter ( ) - > setUseAntiAliasingForSystem ( true ) ; // nicer (but slower) plotting
plot . getPlotter ( ) - > setUseAntiAliasingForText ( true ) ; // nicer (but slower) text rendering
2019-01-20 17:49:29 +08:00
JKQTPDatastore * ds = plot . getDatastore ( ) ;
2018-12-29 00:46:47 +08:00
// 2. now we create data for the charts (taken from https://commons.wikimedia.org/wiki/File:Energiemix_Deutschland.svg)
cv : : Mat airydisk ( 150 , 150 , CV_64FC1 ) ; // OpenCV-Image for the data
const double dx = 1e-2 ; // size of a pixel in x-direction [micrometers]
const double dy = 1e-2 ; // size of a pixel in x-direction [micrometers]
const double w = static_cast < double > ( airydisk . cols ) * dx ;
const double h = static_cast < double > ( airydisk . rows ) * dy ;
// 2.1 Parameters for airy disk plot (see https://en.wikipedia.org/wiki/Airy_disk)
double NA = 1.1 ; // numerical aperture of lens
double wavelength = 488e-3 ; // wavelength of the light [micrometers]
// 2.2 calculate image of airy disk in a row-major array
double x , y = - h / 2.0 ;
for ( int iy = 0 ; iy < airydisk . rows ; iy + + ) {
x = - w / 2.0 ;
for ( int ix = 0 ; ix < airydisk . cols ; ix + + ) {
const double r = sqrt ( x * x + y * y ) ;
const double v = 2.0 * M_PI * NA * r / wavelength ;
airydisk . at < double > ( iy , ix ) = pow ( 2.0 * j1 ( v ) / v , 2 ) ;
x + = dx ;
}
y + = dy ;
}
2019-01-20 23:15:10 +08:00
// 3. make data available to JKQTPlotter by adding it to the internal datastore.
2018-12-29 00:46:47 +08:00
// In this step the contents of one channel of the openCV cv::Mat is copied into a column
// of the datastore in row-major order
2019-01-20 17:49:29 +08:00
size_t cAiryDisk = JKQTPCopyCvMatToColumn ( ds , airydisk , " imagedata " ) ;
2018-12-29 00:46:47 +08:00
// 4. create a graph (JKQTPColumnMathImage) with the column created above as data
// The data is color-coded with the color-palette JKQTPMathImageMATLAB
2019-01-26 20:00:40 +08:00
// the converted range of data is determined automatically because setAutoImageRange(true)
2018-12-29 00:46:47 +08:00
JKQTPColumnMathImage * graph = new JKQTPColumnMathImage ( & plot ) ;
2019-01-26 20:00:40 +08:00
graph - > setTitle ( " " ) ;
2018-12-29 00:46:47 +08:00
// image column with the data
2019-01-26 20:00:40 +08:00
graph - > setImageColumn ( cAiryDisk ) ;
2018-12-29 00:46:47 +08:00
// set size of the data (the datastore does not contain this info, as it only manages 1D columns of data and this is used to assume a row-major ordering
2019-01-26 20:00:40 +08:00
graph - > setNx ( airydisk . cols ) ;
graph - > setNy ( airydisk . rows ) ;
2018-12-29 00:46:47 +08:00
// where does the image start in the plot, given in plot-axis-coordinates (bottom-left corner)
2019-01-26 20:00:40 +08:00
graph - > setX ( - w / 2.0 ) ;
graph - > setY ( - h / 2.0 ) ;
2018-12-29 00:46:47 +08:00
// width and height of the image in plot-axis-coordinates
2019-01-26 20:00:40 +08:00
graph - > setWidth ( w ) ;
graph - > setHeight ( h ) ;
2018-12-29 00:46:47 +08:00
// color-map is "MATLAB"
2019-01-26 20:00:40 +08:00
graph - > setPalette ( JKQTPMathImageMATLAB ) ;
2018-12-29 00:46:47 +08:00
// get coordinate axis of color-bar and set its label
2019-01-26 20:00:40 +08:00
graph - > getColorBarRightAxis ( ) - > setAxisLabel ( " light intensity [A.U.] " ) ;
2018-12-29 00:46:47 +08:00
// determine min/max of data automatically and use it to set the range of the color-scale
2019-01-26 20:00:40 +08:00
graph - > setAutoImageRange ( true ) ;
2018-12-29 00:46:47 +08:00
// you can set the color-scale range manually by using:
2019-01-26 20:00:40 +08:00
// graph->setAutoImageRange(false);
// graph->setImageMin(0);
// graph->setImageMax(10);
2018-12-29 00:46:47 +08:00
// 5. add the graphs to the plot, so it is actually displayed
plot . addGraph ( graph ) ;
// 6. set axis labels
2019-01-26 03:16:04 +08:00
plot . getXAxis ( ) - > setAxisLabel ( " x [{ \\ mu}m] " ) ;
plot . getYAxis ( ) - > setAxisLabel ( " y [{ \\ mu}m] " ) ;
2018-12-29 00:46:47 +08:00
// 7. fix axis and plot aspect ratio to 1
2019-01-26 03:16:04 +08:00
plot . getPlotter ( ) - > setMaintainAspectRatio ( true ) ;
plot . getPlotter ( ) - > setMaintainAxisAspectRatio ( true ) ;
2018-12-29 00:46:47 +08:00
// 8 autoscale the plot so the graph is contained
plot . zoomToFit ( ) ;
// show plotter and make it a decent size
plot . show ( ) ;
plot . resize ( 600 , 600 ) ;
plot . setWindowTitle ( " JKQTPColumnMathImage " ) ;
return app . exec ( ) ;
}