mirror of
https://github.com/jkriege2/JKQtPlotter.git
synced 2024-11-16 02:25:50 +08:00
107 lines
2.7 KiB
C++
107 lines
2.7 KiB
C++
|
/*
|
||
|
Copyright (c) 2008-2019 Jan W. Krieger (<jan@jkrieger.de>)
|
||
|
|
||
|
last modification: $LastChangedDate$ (revision $Rev$)
|
||
|
|
||
|
This software is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License (LGPL) as published by
|
||
|
the Free Software Foundation, either version 2.1 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License (LGPL) for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public License (LGPL)
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
#include "jkqtpstatisticstools.h"
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DGaussian(double t) {
|
||
|
return exp(-0.5*t*t)/JKQTPSTATISTICS_SQRT_2PI;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DCauchy(double t) {
|
||
|
return 1.0/(M_PI*(1.0+t*t));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DPicard(double t) {
|
||
|
return exp(-0.5*fabs(t))/2.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DEpanechnikov(double t) {
|
||
|
return (fabs(t)<1.0)?(0.75*(1.0-t*t)):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DUniform(double t) {
|
||
|
return (fabs(t)<=1.0)?0.5:0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DTriangle(double t) {
|
||
|
return (fabs(t)<=1.0)?(1.0-fabs(t)):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DQuartic(double t) {
|
||
|
return (fabs(t)<=1.0)?(15.0/16.0*jkqtp_sqr(1.0-t*t)):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DTriweight(double t) {
|
||
|
return (fabs(t)<1.0)?(35.0/32.0*jkqtp_cube(1.0-t*t)):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DTricube(double t) {
|
||
|
return (fabs(t)<1.0)?(70.0/81.0*jkqtp_cube(1.0-jkqtp_cube(fabs(t)))):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel1DCosine(double t) {
|
||
|
return (fabs(t)<1.0)?(M_PI/4.0*cos(t*M_PI/2.0)):0.0;
|
||
|
}
|
||
|
|
||
|
|
||
|
double jkqtpstatKernel2DGaussian(double tx, double ty)
|
||
|
{
|
||
|
return exp(-0.5*(tx*tx+ty*ty))/(2.0*M_PI);
|
||
|
}
|
||
|
|
||
|
double jkqtpstatKernel2DUniform(double tx, double ty) {
|
||
|
return (fabs(tx)<1.0 && fabs(ty)<=1.0)?0.25:0.0;
|
||
|
}
|
||
|
|
||
|
JKQTPStat5NumberStatistics::JKQTPStat5NumberStatistics():
|
||
|
minimum(JKQTP_DOUBLE_NAN),
|
||
|
minimumQuantile(0),
|
||
|
quantile1(JKQTP_DOUBLE_NAN),
|
||
|
quantile1Spec(0.25),
|
||
|
median(JKQTP_DOUBLE_NAN),
|
||
|
quantile2(JKQTP_DOUBLE_NAN),
|
||
|
quantile2Spec(0.75),
|
||
|
maximum(JKQTP_DOUBLE_NAN),
|
||
|
maximumQuantile(1),
|
||
|
N(0)
|
||
|
{}
|
||
|
|
||
|
double JKQTPStat5NumberStatistics::IQR() const {
|
||
|
return quantile2-quantile1;
|
||
|
}
|
||
|
|
||
|
double JKQTPStat5NumberStatistics::IQRSignificanceEstimate() const {
|
||
|
return 2.0*(1.58*(IQR()))/sqrt(static_cast<double>(N));
|
||
|
}
|